IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v308y2022ics0306261921015634.html
   My bibliography  Save this article

Maximising the hydrodynamic performance of offshore oscillating water column wave energy converters

Author

Listed:
  • Gubesch, Eric
  • Abdussamie, Nagi
  • Penesis, Irene
  • Chin, Christopher

Abstract

This paper provides a thorough examination and discussion of a design process developed to improve the hydrodynamic performance of an asymmetrical offshore Oscillating Water Column (OWC) Wave Energy Converter (WEC). The resulting WEC geometry was based on a column-stabilised semi-submersible platform where an asymmetrical OWC chamber was integrated into the moonpool of the platform, resembling both, a purpose built WEC, or an existing offshore structure retrofitted for wave energy conversion. The performance of a 1:36 scale model of the OWC WEC was designed using a validated computational fluid dynamics (CFD) method and experimentally tested to evaluate the effect of the external support structure on the hydrodynamic performance of the device. Detailed analysis included physical and numerical decay tests to quantify the natural period of the OWC moonpool, wave and OWC-structure interactions, turbine damping coefficients and hydrodynamic capture width ratios. The obtained results revealed that the addition of the external support structure improved the OWC Capture Width Ratio (CWR) from 0.849 at kd ∼ 2.53 to 1.541 at kd ∼ 2.99 (81.5% increase). It was also observed that the external support structure shifted the peak performance towards higher frequency waves.

Suggested Citation

  • Gubesch, Eric & Abdussamie, Nagi & Penesis, Irene & Chin, Christopher, 2022. "Maximising the hydrodynamic performance of offshore oscillating water column wave energy converters," Applied Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:appene:v:308:y:2022:i:c:s0306261921015634
    DOI: 10.1016/j.apenergy.2021.118304
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921015634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ulazia, Alain & Esnaola, Ganix & Serras, Paula & Penalba, Markel, 2020. "On the impact of long-term wave trends on the geometry optimisation of oscillating water column wave energy converters," Energy, Elsevier, vol. 206(C).
    2. Martinelli, Luca & Zanuttigh, Barbara & Kofoed, Jens Peter, 2011. "Selection of design power of wave energy converters based on wave basin experiments," Renewable Energy, Elsevier, vol. 36(11), pages 3124-3132.
    3. Sheng, Wanan, 2019. "Power performance of BBDB OWC wave energy converters," Renewable Energy, Elsevier, vol. 132(C), pages 709-722.
    4. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Scaling and air compressibility effects on a three-dimensional offshore stationary OWC wave energy converter," Applied Energy, Elsevier, vol. 189(C), pages 1-20.
    5. Elhanafi, Ahmed & Kim, Chan Joo, 2018. "Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter," Renewable Energy, Elsevier, vol. 125(C), pages 518-528.
    6. Simonetti, I. & Cappietti, L. & Oumeraci, H., 2018. "An empirical model as a supporting tool to optimize the main design parameters of a stationary oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 231(C), pages 1205-1215.
    7. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
    8. Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2017. "Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter," Renewable Energy, Elsevier, vol. 105(C), pages 209-231.
    9. Ning, De-Zhi & Wang, Rong-Quan & Zou, Qing-Ping & Teng, Bin, 2016. "An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter," Applied Energy, Elsevier, vol. 168(C), pages 636-648.
    10. Daniel Raj, D. & Sundar, V. & Sannasiraj, S.A., 2019. "Enhancement of hydrodynamic performance of an Oscillating Water Column with harbour walls," Renewable Energy, Elsevier, vol. 132(C), pages 142-156.
    11. Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2017. "Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study," Energy, Elsevier, vol. 139(C), pages 1197-1209.
    12. Falcão, António F.O. & Henriques, João C.C. & Cândido, José J., 2012. "Dynamics and optimization of the OWC spar buoy wave energy converter," Renewable Energy, Elsevier, vol. 48(C), pages 369-381.
    13. Singh, Uddish & Abdussamie, Nagi & Hore, Jack, 2020. "Hydrodynamic performance of a floating offshore OWC wave energy converter: An experimental study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamei, Mehdi & Ali, Mumtaz & Karbasi, Masoud & Xiang, Yong & Ahmadianfar, Iman & Yaseen, Zaher Mundher, 2022. "Designing a Multi-Stage Expert System for daily ocean wave energy forecasting: A multivariate data decomposition-based approach," Applied Energy, Elsevier, vol. 326(C).
    2. Trivedi, Kshma & Koley, Santanu, 2023. "Mathematical modeling of oscillating water column wave energy converter devices placed over an undulated seabed in a two-layer fluid system," Renewable Energy, Elsevier, vol. 216(C).
    3. Gubesch, Eric & Abdussamie, Nagi & Penesis, Irene & Chin, Christopher, 2022. "Effects of mooring configurations on the hydrodynamic performance of a floating offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    4. Chen, Weixing & Zhou, Boen & Huang, Hao & Lu, Yunfei & Li, Shaoxun & Gao, Feng, 2022. "Design, modeling and performance analysis of a deployable WEC for ocean robots," Applied Energy, Elsevier, vol. 327(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gubesch, Eric & Abdussamie, Nagi & Penesis, Irene & Chin, Christopher, 2022. "Effects of mooring configurations on the hydrodynamic performance of a floating offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Elhanafi, Ahmed & Macfarlane, Gregor & Ning, Dezhi, 2018. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD," Applied Energy, Elsevier, vol. 228(C), pages 82-96.
    4. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    5. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Li, Ming, 2022. "Experimental study on the overall performance of a model OWC system under the free-spinning mode in irregular waves," Energy, Elsevier, vol. 250(C).
    6. Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2018. "Evaluation of air compressibility effects on the performance of fixed OWC wave energy converters using CFD modelling," Renewable Energy, Elsevier, vol. 119(C), pages 741-753.
    7. Oikonomou, Charikleia L.G. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Unveiling the potential of using a spar-buoy oscillating-water-column wave energy converter for low-power stand-alone applications," Applied Energy, Elsevier, vol. 292(C).
    8. Liu, Zhen & Xu, Chuanli & Qu, Na & Cui, Ying & Kim, Kilwon, 2020. "Overall performance evaluation of a model-scale OWC wave energy converter," Renewable Energy, Elsevier, vol. 149(C), pages 1325-1338.
    9. Liu, Zhen & Xu, Chuanli & Zhang, Xiaoxia & Ning, Dezhi, 2023. "Experimental study on an isolated oscillating water column wave energy converting device in oblique waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    10. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Choi, Jongsu & Hyun, Beom-soo, 2021. "An integrated numerical model for the chamber-turbine system of an oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.
    12. Opoku, F. & Uddin, M.N. & Atkinson, M., 2023. "A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    13. Chen, Jing & Wen, Hongjie & Wang, Yongxue & Wang, Guoyu, 2021. "A correlation study of optimal chamber width with the relative front wall draught of onshore OWC device," Energy, Elsevier, vol. 225(C).
    14. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
    15. Elhanafi, Ahmed & Kim, Chan Joo, 2018. "Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter," Renewable Energy, Elsevier, vol. 125(C), pages 518-528.
    16. Gang, Ao & Guo, Baoming & Hu, Zhongbo & Hu, Rui, 2022. "Performance analysis of a coast – OWC wave energy converter integrated system," Applied Energy, Elsevier, vol. 311(C).
    17. Singh, Uddish & Abdussamie, Nagi & Hore, Jack, 2020. "Hydrodynamic performance of a floating offshore OWC wave energy converter: An experimental study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    18. Calheiros-Cabral, Tomás & Clemente, Daniel & Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Ramos, Victor & Morais, Tiago & Cestaro, Henrique, 2020. "Evaluation of the annual electricity production of a hybrid breakwater-integrated wave energy converter," Energy, Elsevier, vol. 213(C).
    19. Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2017. "Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study," Energy, Elsevier, vol. 139(C), pages 1197-1209.
    20. Irene Simonetti & Andrea Esposito & Lorenzo Cappietti, 2022. "Experimental Proof-of-Concept of a Hybrid Wave Energy Converter Based on Oscillating Water Column and Overtopping Mechanisms," Energies, MDPI, vol. 15(21), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:308:y:2022:i:c:s0306261921015634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.