IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v164y2016icp211-219.html
   My bibliography  Save this item

Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yibing Xue & Wenhan Liu, 2022. "A Study on Parametric Design Method for Optimization of Daylight in Commercial Building’s Atrium in Cold Regions," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
  2. Zhou, Kai & Leng, Jia-Wei, 2023. "State-of-the-art research of performance-driven architectural design for low-carbon urban underground space: Systematic review and proposed design strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
  3. Chen, Xi & Yang, Hongxing & Peng, Jinqing, 2019. "Energy optimization of high-rise commercial buildings integrated with photovoltaic facades in urban context," Energy, Elsevier, vol. 172(C), pages 1-17.
  4. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
  5. Chen, Xi & Yang, Hongxing & Sun, Ke, 2016. "A holistic passive design approach to optimize indoor environmental quality of a typical residential building in Hong Kong," Energy, Elsevier, vol. 113(C), pages 267-281.
  6. Wang, Guangpeng & Ma, Yuxin & Zhang, Shu & Li, Dong & Hu, Rong & Zhou, Yingming, 2023. "Thermal performance of a novel double-glazed window combining PCM and solar control glass in summer," Renewable Energy, Elsevier, vol. 219(P1).
  7. Tarek M. Kamel & Amany Khalil & Mohammed M. Lakousha & Randa Khalil & Mohamed Hamdy, 2024. "Optimizing the View Percentage, Daylight Autonomy, Sunlight Exposure, and Energy Use: Data-Driven-Based Approach for Maximum Space Utilization in Residential Building Stock in Hot Climates," Energies, MDPI, vol. 17(3), pages 1-27, January.
  8. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
  9. Jian Ma & Tomo Inoue & Qiaoling Fang & Kunming Li & Mengqi Li, 2023. "A Study on Optimal Opening Configuration for Art Museum Exhibition Space Considering Daylight Performance, Indoor Thermal Comfort, and Energy Consumption," Sustainability, MDPI, vol. 15(23), pages 1-25, November.
  10. Sun, Yanyi & Wu, Yupeng & Wilson, Robin, 2018. "A review of thermal and optical characterisation of complex window systems and their building performance prediction," Applied Energy, Elsevier, vol. 222(C), pages 729-747.
  11. Zhang, Shu & Hu, Wanyu & Li, Dong & Zhang, Chengjun & Arıcı, Müslüm & Yıldız, Çağatay & Zhang, Xin & Ma, Yuxin, 2021. "Energy efficiency optimization of PCM and aerogel-filled multiple glazing windows," Energy, Elsevier, vol. 222(C).
  12. Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
  13. Ali Mohammed AL-Dossary & Daeung Danny Kim, 2020. "A Study of Design Variables in Daylight and Energy Performance in Residential Buildings under Hot Climates," Energies, MDPI, vol. 13(21), pages 1-16, November.
  14. Zhang, Yan & Teoh, Bak Koon & Zhang, Limao, 2024. "Multi-objective optimization for energy-efficient building design considering urban heat island effects," Applied Energy, Elsevier, vol. 376(PA).
  15. Aniela Kaminska, 2020. "Impact of Building Orientation on Daylight Availability and Energy Savings Potential in an Academic Classroom," Energies, MDPI, vol. 13(18), pages 1-17, September.
  16. Cheng, Yuanda & Gao, Min & Jia, Jie & Sun, Yanyi & Fan, Yi & Yu, Min, 2019. "An optimal and comparison study on daylight and overall energy performance of double-glazed photovoltaics windows in cold region of China," Energy, Elsevier, vol. 170(C), pages 356-366.
  17. Zhai, Yingni & Wang, Yi & Huang, Yanqiu & Meng, Xiaojing, 2019. "A multi-objective optimization methodology for window design considering energy consumption, thermal environment and visual performance," Renewable Energy, Elsevier, vol. 134(C), pages 1190-1199.
  18. Sun, Yanyi & Liang, Runqi & Wu, Yupeng & Wilson, Robin & Rutherford, Peter, 2017. "Development of a comprehensive method to analyse glazing systems with Parallel Slat Transparent Insulation material (PS-TIM)," Applied Energy, Elsevier, vol. 205(C), pages 951-963.
  19. Xie, Jing Chao & Xue, Peng & Mak, Cheuk Ming & Liu, Jia Ping, 2017. "Balancing energy and daylighting performances for envelope design: A new index and proposition of a case study in Hong Kong," Applied Energy, Elsevier, vol. 205(C), pages 13-22.
  20. Wang, Chuyao & Ji, Jie & Yu, Bendong & Zhang, Chengyan & Ke, Wei & Wang, Jun, 2022. "Comprehensive investigation on the luminous and energy-saving performance of the double-skin ventilated window integrated with CdTe cells," Energy, Elsevier, vol. 238(PB).
  21. Hyomun Lee & Tien Nhat Tran & Ruda Lee & Dongsu Kim & Hyunkyu Choi & Jongho Yoon, 2025. "The Assessment of Electricity Self-Sufficiency Potential of Facade-Applied Photovoltaic Systems Based on Design Scenarios: A Case Study of an Apartment Complex in the Republic of Korea," Energies, MDPI, vol. 18(3), pages 1-16, January.
  22. Fangyuan Xie & Yi Wu & Xinqi Wang & Xiling Zhou, 2024. "Optimization Strategies for the Envelope of Student Dormitories in Hot Summer and Cold Winter Regions: Multi-Criteria Assessment Method," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
  23. Yuan Fang & Soolyeon Cho & Yanyu Wang & Luya He, 2023. "Sensitivity Analysis and Multi-Objective Optimization of Skylight Design in the Early Design Stage," Energies, MDPI, vol. 17(1), pages 1-18, December.
  24. Aleksandra Nenadović & Jelena Milošević, 2022. "Creating Sustainable Buildings: Structural Design Based on the Criterion of Social Benefits for Building Users," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
  25. Sgaramella, Antonio & Pastore, Lorenzo Mario & Lo Basso, Gianluigi & de Santoli, Livio, 2023. "Optimal RES integration for matching the Italian hydrogen strategy requirements," Renewable Energy, Elsevier, vol. 219(P1).
  26. Yue Zhang & Siddig Omer & Ruichang Hu, 2025. "Impact of Window Size Modification on Energy Consumption in UK Residential Buildings: A Feasibility and Simulation Study," Sustainability, MDPI, vol. 17(7), pages 1-22, April.
  27. Seok-Hyun Kim & Hakgeun Jeong & Soo Cho, 2019. "A Study on Changes of Window Thermal Performance by Analysis of Physical Test Results in Korea," Energies, MDPI, vol. 12(20), pages 1-17, October.
  28. Zhenzhong Guan & Xiang Xu & Yibing Xue & Chongjie Wang, 2022. "Multi-Objective Optimization Design of Geometric Parameters of Atrium in nZEB Based on Energy Consumption, Carbon Emission and Cost," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
  29. Alejandra Susa-Páez & María Beatriz Piderit-Moreno, 2020. "Geometric Optimization of Atriums with Natural Lighting Potential for Detached High-Rise Buildings," Sustainability, MDPI, vol. 12(16), pages 1-40, August.
  30. Acosta, Ignacio & Campano, Miguel Ángel & Molina, Juan Francisco, 2016. "Window design in architecture: Analysis of energy savings for lighting and visual comfort in residential spaces," Applied Energy, Elsevier, vol. 168(C), pages 493-506.
  31. Krarti, Moncef, 2022. "Design optimization of smart glazing optical properties for office spaces," Applied Energy, Elsevier, vol. 308(C).
  32. Li, Hangxin & Wang, Shengwei & Cheung, Howard, 2018. "Sensitivity analysis of design parameters and optimal design for zero/low energy buildings in subtropical regions," Applied Energy, Elsevier, vol. 228(C), pages 1280-1291.
  33. Chen, Qian & Oh, Seung Jin & Burhan, Muhammad, 2020. "Design and optimization of a novel electrowetting-driven solar-indoor lighting system," Applied Energy, Elsevier, vol. 269(C).
  34. Seyedeh Farzaneh Mousavi Motlagh & Ali Sohani & Mohammad Djavad Saghafi & Hoseyn Sayyaadi & Benedetto Nastasi, 2021. "The Road to Developing Economically Feasible Plans for Green, Comfortable and Energy Efficient Buildings," Energies, MDPI, vol. 14(3), pages 1-30, January.
  35. Paulos, Jason & Berardi, Umberto, 2020. "Optimizing the thermal performance of window frames through aerogel-enhancements," Applied Energy, Elsevier, vol. 266(C).
  36. Xue, Peng & Li, Qian & Xie, Jingchao & Zhao, Mengjing & Liu, Jiaping, 2019. "Optimization of window-to-wall ratio with sunshades in China low latitude region considering daylighting and energy saving requirements," Applied Energy, Elsevier, vol. 233, pages 62-70.
  37. Zhang, Shu & Ma, Yuxin & Li, Dong & Liu, Changyu & Yang, Ruitong, 2022. "Thermal performance of a reversible multiple-glazing roof filled with two PCM," Renewable Energy, Elsevier, vol. 182(C), pages 1080-1093.
  38. Gupta, V. & Deb, C., 2023. "Envelope design for low-energy buildings in the tropics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
  39. Hao Hu & Hui Zhang & Li Wang & Zikang Ke, 2023. "Evaluation and Design of Parameterized Dynamic Daylighting for Large-Space Buildings," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
  40. de Almeida Rocha, Ana Paula & Reynoso-Meza, Gilberto & Oliveira, Ricardo C.L.F. & Mendes, Nathan, 2020. "A pixel counting based method for designing shading devices in buildings considering energy efficiency, daylight use and fading protection," Applied Energy, Elsevier, vol. 262(C).
  41. Jaewook Lee & Mohamed Boubekri & Feng Liang, 2019. "Impact of Building Design Parameters on Daylighting Metrics Using an Analysis, Prediction, and Optimization Approach Based on Statistical Learning Technique," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
  42. Chen, Xi & Yang, Hongxing & Sun, Ke, 2017. "Developing a meta-model for sensitivity analyses and prediction of building performance for passively designed high-rise residential buildings," Applied Energy, Elsevier, vol. 194(C), pages 422-439.
  43. Favoino, Fabio & Fiorito, Francesco & Cannavale, Alessandro & Ranzi, Gianluca & Overend, Mauro, 2016. "Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates," Applied Energy, Elsevier, vol. 178(C), pages 943-961.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.