IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v113y2014icp1924-1932.html
   My bibliography  Save this item

Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Tescari, S. & Singh, A. & Agrafiotis, C. & de Oliveira, L. & Breuer, S. & Schlögl-Knothe, B. & Roeb, M. & Sattler, C., 2017. "Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant," Applied Energy, Elsevier, vol. 189(C), pages 66-75.
  2. Cabello, Arturo & Abad, Alberto & Gayán, Pilar & García-Labiano, Francisco & de Diego, Luis F. & Adánez, Juan, 2021. "Increasing energy efficiency in chemical looping combustion of methane by in-situ activation of perovskite-based oxygen carriers," Applied Energy, Elsevier, vol. 287(C).
  3. Lin, Shen & Gu, Zhenhua & Zhu, Xing & Wei, Yonggang & Long, Yanhui & Yang, Kun & He, Fang & Wang, Hua & Li, Kongzhai, 2020. "Synergy of red mud oxygen carrier with MgO and NiO for enhanced chemical-looping combustion," Energy, Elsevier, vol. 197(C).
  4. Haider, S.K. & Azimi, G. & Duan, L. & Anthony, E.J. & Patchigolla, K. & Oakey, J.E. & Leion, H. & Mattisson, T. & Lyngfelt, A., 2016. "Enhancing properties of iron and manganese ores as oxygen carriers for chemical looping processes by dry impregnation," Applied Energy, Elsevier, vol. 163(C), pages 41-50.
  5. Benincosa, William & Siriwardane, Ranjani & Tian, Hanjing & Riley, Jarrett, 2017. "Unique phase identification of trimetallic copper iron manganese oxygen carrier using simultaneous differential scanning calorimetry/thermogravimetric analysis during chemical looping combustion react," Applied Energy, Elsevier, vol. 203(C), pages 522-534.
  6. Zhao, Haibo & Guo, Lei & Zou, Xixian, 2015. "Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 408-415.
  7. Di, Zichen & Yilmaz, Duygu & Biswas, Arijit & Cheng, Fangqin & Leion, Henrik, 2022. "Spinel ferrite-contained industrial materials as oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 307(C).
  8. Li, Fang-zhou & Kang, Jing-xian & Song, Yun-cai & Feng, Jie & Li, Wen-ying, 2020. "Thermodynamic feasibility for molybdenum-based gaseous oxides assisted looping coal gasification and its derived power plant," Energy, Elsevier, vol. 194(C).
  9. Jiang, Qiongqiong & Zhang, Hao & Deng, Ya'nan & Kang, Qilan & Hong, Hui & Jin, Hongguang, 2018. "Properties and reactivity of LaCuxNi1−xO3 perovskites in chemical-looping combustion for mid-temperature solar-thermal energy storage," Applied Energy, Elsevier, vol. 228(C), pages 1506-1514.
  10. Pérez-Vega, R. & Abad, A. & Izquierdo, M.T. & Gayán, P. & de Diego, L.F. & Adánez, J., 2019. "Evaluation of Mn-Fe mixed oxide doped with TiO2 for the combustion with CO2 capture by Chemical Looping assisted by Oxygen Uncoupling," Applied Energy, Elsevier, vol. 237(C), pages 822-835.
  11. Hu, Wenting & Donat, Felix & Scott, S.A. & Dennis, J.S., 2016. "Kinetics of oxygen uncoupling of a copper based oxygen carrier," Applied Energy, Elsevier, vol. 161(C), pages 92-100.
  12. Henrik Leion & Volkmar Frick & Fredrik Hildor, 2018. "Experimental Method and Setup for Laboratory Fluidized Bed Reactor Testing," Energies, MDPI, vol. 11(10), pages 1-17, September.
  13. Schmitz, Matthias & Linderholm, Carl Johan, 2016. "Performance of calcium manganate as oxygen carrier in chemical looping combustion of biochar in a 10kW pilot," Applied Energy, Elsevier, vol. 169(C), pages 729-737.
  14. Benincosa, William & Siriwardane, Ranjani & Tian, Hanjing & Riley, Jarrett & Poston, James, 2020. "A particle-scale reduction model of copper iron manganese oxide with CO for chemical looping combustion," Applied Energy, Elsevier, vol. 262(C).
  15. Huang, Jijiang & Liu, Wen & Hu, Wenting & Metcalfe, Ian & Yang, Yanhui & Liu, Bin, 2019. "Phase interactions in Ni-Cu-Al2O3 mixed oxide oxygen carriers for chemical looping applications," Applied Energy, Elsevier, vol. 236(C), pages 635-647.
  16. Xu, Lei & Sun, Hongming & Li, Zhenshan & Cai, Ningsheng, 2016. "Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor," Applied Energy, Elsevier, vol. 162(C), pages 940-947.
  17. Zhao, Kun & Li, Luwei & Zheng, Anqing & Huang, Zhen & He, Fang & Shen, Yang & Wei, Guoqiang & Li, Haibin & Zhao, Zengli, 2017. "Synergistic improvements in stability and performance of the double perovskite-type oxides La2−xSrxFeCoO6 for chemical looping steam methane reforming," Applied Energy, Elsevier, vol. 197(C), pages 393-404.
  18. Albrecht, Kevin J. & Jackson, Gregory S. & Braun, Robert J., 2016. "Thermodynamically consistent modeling of redox-stable perovskite oxides for thermochemical energy conversion and storage," Applied Energy, Elsevier, vol. 165(C), pages 285-296.
  19. Zhang, Hao & Hong, Hui & Jiang, Qiongqiong & Deng, Ya'nan & Jin, Hongguang & Kang, Qilan, 2018. "Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4," Applied Energy, Elsevier, vol. 211(C), pages 259-268.
  20. Galinsky, Nathan & Mishra, Amit & Zhang, Jia & Li, Fanxing, 2015. "Ca1−xAxMnO3 (A=Sr and Ba) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 157(C), pages 358-367.
  21. Dizaji, Hossein Beidaghy & Hosseini, Hannaneh, 2018. "A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 9-26.
  22. Zhao, Kun & He, Fang & Huang, Zhen & Wei, Guoqiang & Zheng, Anqing & Li, Haibin & Zhao, Zengli, 2016. "Perovskite-type oxides LaFe1−xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production," Applied Energy, Elsevier, vol. 168(C), pages 193-203.
  23. Frick, Volkmar & Rydén, Magnus & Leion, Henrik & Mattisson, Tobias & Lyngfelt, Anders, 2015. "Screening of supported and unsupported Mn–Si oxygen carriers for CLOU (chemical-looping with oxygen uncoupling)," Energy, Elsevier, vol. 93(P1), pages 544-554.
  24. Ping Wang & Nicholas Means & Dushyant Shekhawat & David Berry & Mehrdad Massoudi, 2015. "Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review," Energies, MDPI, vol. 8(10), pages 1-31, September.
  25. Galinsky, Nathan & Sendi, Marwan & Bowers, Lindsay & Li, Fanxing, 2016. "CaMn1−xBxO3−δ (B=Al, V, Fe, Co, and Ni) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 174(C), pages 80-87.
  26. Kang, Dohyung & Lim, Hyun Suk & Lee, Minbeom & Lee, Jae W., 2018. "Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane," Applied Energy, Elsevier, vol. 211(C), pages 174-186.
  27. Abad, A. & Pérez-Vega, R. & de Diego, L.F. & Gayán, P. & Izquierdo, M.T. & García-Labiano, F. & Adánez, J., 2019. "Thermochemical assessment of chemical looping assisted by oxygen uncoupling with a MnFe-based oxygen carrier," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  28. Siriwardane, Ranjani & Riley, Jarrett & Benincosa, William & Bayham, Samuel & Bobek, Michael & Straub, Douglas & Weber, Justin, 2021. "Development of CuFeMnAlO4+δ oxygen carrier with high attrition resistance and 50-kWth methane/air chemical looping combustion tests," Applied Energy, Elsevier, vol. 286(C).
  29. Tang, Mingchen & Xu, Long & Fan, Maohong, 2015. "Progress in oxygen carrier development of methane-based chemical-looping reforming: A review," Applied Energy, Elsevier, vol. 151(C), pages 143-156.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.