IDEAS home Printed from https://ideas.repec.org/r/cup/etheor/v2y1986i03p350-373_01.html
   My bibliography  Save this item

The Estimation of Open Higher-Order Continuous Time Dynamic Models with Mixed Stock and Flow Data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Theodore Simos, 2008. "The exact discrete model of a system of linear stochastic differential equations driven by fractional noise," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 1019-1031, November.
  2. Chambers, Marcus J, 1992. "Estimation of a Continuous-Time Dynamic Demand System," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(1), pages 53-64, Jan.-Marc.
  3. Jun Yu & Peter C. B. Phillips, 2001. "A Gaussian approach for continuous time models of the short-term interest rate," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-3.
  4. Jun Yu, 2009. "Econometric Analysis of Continuous Time Models : A Survey of Peter Phillips’ Work and Some New Results," Microeconomics Working Papers 23046, East Asian Bureau of Economic Research.
  5. Peter Aling & Shakill Hassan, 2012. "No-Arbitrage One-Factor Models Of The South African Term Structure Of Interest Rates," South African Journal of Economics, Economic Society of South Africa, vol. 80(3), pages 301-318, September.
  6. Milena Hoyos, 2020. "Mixed First‐ and Second‐Order Cointegrated Continuous Time Models with Mixed Stock and Flow Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 249-267, March.
  7. Chambers, Marcus J., 1999. "Discrete time representation of stationary and non-stationary continuous time systems," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 619-639, February.
  8. Wymer Clifford R., 2012. "Continuous-Tme Econometrics of Structural Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(2), pages 1-28, April.
  9. Tunaru, Diana, 2017. "Gaussian estimation and forecasting of the U.K. yield curve with multi-factor continuous-time models," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 119-129.
  10. J. Roderick McCrorie, 2000. "The Likelihood of a Continuous-time Vector Autoregressive Model," Working Papers 419, Queen Mary University of London, School of Economics and Finance.
  11. Thornton, Michael A. & Chambers, Marcus J., 2017. "Continuous time ARMA processes: Discrete time representation and likelihood evaluation," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 48-65.
  12. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
  13. Oguz Asirim, 1996. "Alternative Theories of Consumption and an Application to the Turkish Economy," Discussion Papers 9604, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
  14. Episcopos, Athanasios, 2000. "Further evidence on alternative continuous time models of the short-term interest rate," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(2), pages 199-212, June.
  15. Roderick McCrorie, J., 2001. "Interpolating exogenous variables in continuous time dynamic models," Journal of Economic Dynamics and Control, Elsevier, vol. 25(9), pages 1399-1427, September.
  16. Byers, S. L. & Nowman, K. B., 1998. "Forecasting U.K. and U.S. interest rates using continuous time term structure models," International Review of Financial Analysis, Elsevier, vol. 7(3), pages 191-206.
  17. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
  18. Al-Zoubi, Haitham A., 2019. "Bond and option prices with permanent shocks," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 272-290.
  19. J. Roderick McCrorie, 2000. "The Likelihood of a Continuous-time Vector Autoregressive Model," Working Papers 419, Queen Mary University of London, School of Economics and Finance.
  20. Nowman, K. Ben & Saltoglu, Burak, 2003. "Continuous time and nonparametric modelling of U.S. interest rate models," International Review of Financial Analysis, Elsevier, vol. 12(1), pages 25-34.
  21. Nowman, K. Ben, 2002. "The volatility of Japanese interest rates: evidence for Certificate of Deposit and Gensaki rates," International Review of Financial Analysis, Elsevier, vol. 11(1), pages 29-38.
  22. Michael A. Thornton & Marcus J. Chambers, 2013. "Temporal aggregation in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 13, pages 289-310, Edward Elgar Publishing.
  23. Jun Yu & Peter C.B. Phillips, 2001. "Gaussian Estimation of Continuous Time Models of the Short Term Interest Rate," Cowles Foundation Discussion Papers 1309, Cowles Foundation for Research in Economics, Yale University.
  24. K. Ben Nowman, 1998. "Continuous-time short term interest rate models," Applied Financial Economics, Taylor & Francis Journals, vol. 8(4), pages 401-407.
  25. A. R. Bergstrom, 2001. "Stability and wage acceleration in macroeconomic models of cyclical growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 327-340.
  26. Michael A. Thornton & Marcus J. Chambers, 2013. "Continuous-time autoregressive moving average processes in discrete time: representation and embeddability," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 552-561, September.
  27. Bhaumik, Prithwish & Ghosal, Subhashis, 2017. "Bayesian inference for higher-order ordinary differential equation models," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 103-114.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.