IDEAS home Printed from https://ideas.repec.org/r/bca/bocawp/15-38.html
   My bibliography  Save this item

Nowcasting BRIC+M in Real Time

Citations

RePEc Biblio mentions

As found on the RePEc Biblio, the curated bibliography for Economics:
  1. > Econometrics > Forecasting > Nowcasting

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Heiner Mikosch & Laura Solanko, 2019. "Forecasting Quarterly Russian GDP Growth with Mixed-Frequency Data," Russian Journal of Money and Finance, Bank of Russia, vol. 78(1), pages 19-35, March.
  2. El-Shagi, Makram & Tochkov, Kiril, 2022. "Divisia monetary aggregates for Russia: Money demand, GDP nowcasting and the price puzzle," Economic Systems, Elsevier, vol. 46(4).
  3. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
  4. Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2024. "Lessons from nowcasting GDP across the world," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 8, pages 187-217, Edward Elgar Publishing.
  5. Mahmood, Asif & Masood, Hina, 2024. "A High-frequency Monthly Measure of Real Economic Activity in Pakistan," MPRA Paper 121838, University Library of Munich, Germany.
  6. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
  7. Caruso, Alberto, 2018. "Nowcasting with the help of foreign indicators: The case of Mexico," Economic Modelling, Elsevier, vol. 69(C), pages 160-168.
  8. Arshad, Selvia & Beyer, Robert C.M., 2023. "Tracking economic fluctuations with electricity consumption in Bangladesh," Energy Economics, Elsevier, vol. 123(C).
  9. Bantis, Evripidis & Clements, Michael P. & Urquhart, Andrew, 2023. "Forecasting GDP growth rates in the United States and Brazil using Google Trends," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1909-1924.
  10. Andrey Zubarev & Daniil Lomonosov & Konstantin Rybak, 2022. "Estimation of the Impact of Global Shocks on the Russian Economy and GDP Nowcasting Using a Factor Model," Russian Journal of Money and Finance, Bank of Russia, vol. 81(2), pages 49-78, June.
  11. Modugno, Michele & Soybilgen, Barış & Yazgan, Ege, 2016. "Nowcasting Turkish GDP and news decomposition," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1369-1384.
  12. Timo Wollmershäuser & Marcell Göttert & Christian Grimme & Stefan Lautenbacher & Robert Lehmann & Sebastian Link & Manuel Menkhoff & Sascha Möhrle & Ann-Christin Rathje & Magnus Reif & Pauliina Sandqv, 2020. "ifo Konjunkturprognose Winter 2020: Das Coronavirus schlägt zurück – erneuter Shutdown bremst Konjunktur ein zweites Mal aus," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 73(Sonderaus), pages 03-61, December.
  13. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
  14. Pérez-Quirós, Gabriel & Leiva-León, Danilo & Rots, Eyno, 2020. "Real-Time Weakness of the Global Economy: A First Assessment of the Coronavirus Crisis," CEPR Discussion Papers 14484, C.E.P.R. Discussion Papers.
  15. Daniela Bragoli & Jack Fosten, 2018. "Nowcasting Indian GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(2), pages 259-282, April.
  16. Kaustubh, Kaustubh & Ranjan, Abhishek, 2025. "A multi-factor GDP nowcast model for India," Economic Modelling, Elsevier, vol. 147(C).
  17. Chernis, Tony & Cheung, Calista & Velasco, Gabriella, 2020. "A three-frequency dynamic factor model for nowcasting Canadian provincial GDP growth," International Journal of Forecasting, Elsevier, vol. 36(3), pages 851-872.
  18. Kaufmann, Daniel & Scheufele, Rolf, 2017. "Business tendency surveys and macroeconomic fluctuations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 878-893.
  19. Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
  20. Tony Chernis & Rodrigo Sekkel, 2017. "A dynamic factor model for nowcasting Canadian GDP growth," Empirical Economics, Springer, vol. 53(1), pages 217-234, August.
  21. Soybilgen, Barış & Yazgan, Ege, 2018. "Evaluating nowcasts of bridge equations with advanced combination schemes for the Turkish unemployment rate," Economic Modelling, Elsevier, vol. 72(C), pages 99-108.
  22. Nuttanan Wichitaksorn, 2020. "Analyzing and Forecasting Thai Macroeconomic Data using Mixed-Frequency Approach," PIER Discussion Papers 146, Puey Ungphakorn Institute for Economic Research.
  23. Raquel Nadal Cesar Gonçalves, 2022. "Nowcasting Brazilian GDP with Electronic Payments Data," Working Papers Series 564, Central Bank of Brazil, Research Department.
  24. Fosten, Jack & Nandi, Shaoni, 2025. "Nowcasting U.S. state-level CO2 emissions and energy consumption," International Journal of Forecasting, Elsevier, vol. 41(1), pages 20-30.
  25. Robert Lehmann & Magnus Reif & Timo Wollmershäuser, 2020. "ifoCAST: Der neue Prognosestandard des ifo Instituts," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 73(11), pages 31-39, November.
  26. Byron Botha & Tim Olds & Geordie Reid & Daan Steenkamp & Rossouw van Jaarsveld, 2021. "Nowcasting South African gross domestic product using a suite of statistical models," South African Journal of Economics, Economic Society of South Africa, vol. 89(4), pages 526-554, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.