Data Access, Data Sharing und Privacy
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Luc Rocher & Julien M. Hendrickx & Yves-Alexandre de Montjoye, 2019. "Estimating the success of re-identifications in incomplete datasets using generative models," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
- Duncan, George & Lambert, Diane, 1989. "The Risk of Disclosure for Microdata," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(2), pages 207-217, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
- John R. J. Thompson & Longlong Feng & R. Mark Reesor & Chuck Grace, 2021.
"Know Your Clients’ Behaviours: A Cluster Analysis of Financial Transactions,"
JRFM, MDPI, vol. 14(2), pages 1-29, January.
- John R. J. Thompson & Longlong Feng & R. Mark Reesor & Chuck Grace, 2020. "Know Your Clients' behaviours: a cluster analysis of financial transactions," Papers 2005.03625, arXiv.org, revised May 2020.
- Ron S. Jarmin & John M. Abowd & Robert Ashmead & Ryan Cumings-Menon & Nathan Goldschlag & Michael B. Hawes & Sallie Ann Keller & Daniel Kifer & Philip Leclerc & Jerome P. Reiter & Rolando A. RodrÃgue, 2023.
"An in-depth examination of requirements for disclosure risk assessment,"
Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(43), pages 2220558120-, October.
- Ron S. Jarmin & John M. Abowd & Robert Ashmead & Ryan Cumings-Menon & Nathan Goldschlag & Michael B. Hawes & Sallie Ann Keller & Daniel Kifer & Philip Leclerc & Jerome P. Reiter & Rolando A. Rodr'igue, 2023. "An In-Depth Examination of Requirements for Disclosure Risk Assessment," Papers 2310.09398, arXiv.org.
- Ron S. Jarmin & John M. Abowd & Robert Ashmead & Ryan Cumings-Menon & Nathan Goldschlag & Michael B. Hawes & Sallie Ann Keller & Daniel Kifer & Philip Leclerc & Jerome P. Reiter & Rolando A. Rodríguez, 2023. "An In-Depth Examination of Requirements for Disclosure Risk Assessment," Working Papers 23-49, Center for Economic Studies, U.S. Census Bureau.
- Shlomo, Natalie & Skinner, Chris J., 2010. "Assessing the protection provided by misclassification-based disclosure limitation methods for survey microdata," LSE Research Online Documents on Economics 39119, London School of Economics and Political Science, LSE Library.
- Ratul Das Chaudhury & Chongwoo Choe, 2023.
"Digital Privacy: GDPR and Its Lessons for Australia,"
Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 56(2), pages 204-220, June.
- Ratul Das Chaudhury & Chongwoo Choe, 2022. "Digital Privacy: GDPR and Its Lessons for Australia," Monash Economics Working Papers 2022-19, Monash University, Department of Economics.
- Skinner, Chris J. & Shlomo, Natalie, 2008. "Assessing identification risk in survey microdata using log-linear models," LSE Research Online Documents on Economics 39112, London School of Economics and Political Science, LSE Library.
- Natalie Shlomo & Chris Skinner, 2022. "Measuring risk of re‐identification in microdata: State‐of‐the art and new directions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1644-1662, October.
- Sumit Dutta Chowdhury & George T. Duncan & Ramayya Krishnan & Stephen F. Roehrig & Sumitra Mukherjee, 1999. "Disclosure Detection in Multivariate Categorical Databases: Auditing Confidentiality Protection Through Two New Matrix Operators," Management Science, INFORMS, vol. 45(12), pages 1710-1723, December.
- Marta Cipriani & Lorenzo Di Rocco & Maria Puopolo & Marco Alfò, 2025. "A flexible parametric approach to synthetic patients generation using health data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 34(4), pages 639-662, September.
- Braathen, Christian & Thorsen, Inge & Ubøe, Jan, 2022. "Adjusting for Cell Suppression in Commuting Trip Data," Discussion Papers 2022/13, Norwegian School of Economics, Department of Business and Management Science.
- Marc Fadel & Julien Petot & Pierre-Antoine Gourraud & Alexis Descatha, 2024. "Flexibility of a large blindly synthetized avatar database for occupational research: Example from the CONSTANCES cohort for stroke and knee pain," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-9, July.
- Rehse, Dominik & Tremöhlen, Felix, 2020. "Fostering participation in digital public health interventions: The case of digital contact tracing," ZEW Discussion Papers 20-076, ZEW - Leibniz Centre for European Economic Research.
- Tesary Lin & Sanjog Misra, 2022. "Frontiers: The Identity Fragmentation Bias," Marketing Science, INFORMS, vol. 41(3), pages 433-440, May.
- Gilboa-Freedman, Gail & Smorodinsky, Rann, 2020. "On the properties that characterize privacy," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 59-68.
- James Jackson & Robin Mitra & Brian Francis & Iain Dove, 2022. "Using saturated count models for user‐friendly synthesis of large confidential administrative databases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1613-1643, October.
- Atabey, Ayça & Pothong, Kruakae & Livingstone, Sonia, 2023. "Glossary of terms relating to children’s digital lives," LSE Research Online Documents on Economics 119728, London School of Economics and Political Science, LSE Library.
- German Data Forum RatSWD (ed.), 2020. "Data collection using new information technology," RatSWD Output Series, German Data Forum (RatSWD), volume 6, number 6-6en, November.
- Shaobo Li & Matthew J. Schneider & Yan Yu & Sachin Gupta, 2023. "Reidentification Risk in Panel Data: Protecting for k -Anonymity," Information Systems Research, INFORMS, vol. 34(3), pages 1066-1088, September.
- George Kokolakis & Dimitris Fouskakis, 2008. "On the Discrepancy Measures for the Optimal Equal Probability Partitioning in Bayesian Multivariate Micro-Aggregation," Journal of Classification, Springer;The Classification Society, vol. 25(2), pages 209-224, November.
- Kokolakis, G. & Fouskakis, D., 2009. "Importance partitioning in micro-aggregation," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2439-2445, May.
More about this item
Keywords
; ;NEP fields
This paper has been announced in the following NEP Reports:- NEP-GER-2025-01-20 (German Papers)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:wikdps:308071. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://www.wik.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/zbw/wikdps/308071.html