IDEAS home Printed from https://ideas.repec.org/p/zbw/wikdps/308071.html
   My bibliography  Save this paper

Data Access, Data Sharing und Privacy

Author

Listed:
  • Liebe, Andrea
  • Kroon, Peter
  • Wiewiorra, Lukas

Abstract

Die Studie beleuchtet das Spannungsfeld zwischen Datenschutz, Nutzbarkeit anonymisierter Daten und Verhältnismäßigkeit verschiedener Anonymisierungsverfahren. Es wird deutlich, dass die Interessen von Dateninhabern und Datenempfängern oft gegensätzlich sind: Während Dateninhaber einen hohen Anonymisierungsgrad bevorzugen, um den Datenschutz zu maximieren, wünschen Datenempfänger eine geringere Anonymisierung, um eine bessere Datenqualität und Nutzbarkeit zu erhalten. Der Schwerpunkt liegt auf der Analyse verschiedener Anonymisierungsverfahren. Ihre Stärken, Schwächen und die praktische Umsetzung werden gegenübergestellt, wobei die Wahl des geeigneten Verfahrens als stark abhängig von den Anwendungszielen, den Dateneigenschaften sowie den ökonomischen und technischen Rahmenbedingungen beschrieben wird. Einfache Verfahren sind leicht umsetzbar, beeinträchtigen aber häufig die Datenqualität, während moderne Ansätze bessere Kompromisse bieten, aber anspruchsvoller und kostenintensiver sind. Die Studie unterstreicht, dass ein sinnvoller Datenzugang nur durch die Kombination von geeigneten Anonymisierungsverfahren, klaren regulatorischen Vorgaben und der Berücksichtigung der Interessen aller Akteure erreicht werden kann.

Suggested Citation

  • Liebe, Andrea & Kroon, Peter & Wiewiorra, Lukas, 2024. "Data Access, Data Sharing und Privacy," WIK Discussion Papers 527, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH.
  • Handle: RePEc:zbw:wikdps:308071
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/308071/1/1913217310.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luc Rocher & Julien M. Hendrickx & Yves-Alexandre de Montjoye, 2019. "Estimating the success of re-identifications in incomplete datasets using generative models," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Duncan, George & Lambert, Diane, 1989. "The Risk of Disclosure for Microdata," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(2), pages 207-217, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    2. John R. J. Thompson & Longlong Feng & R. Mark Reesor & Chuck Grace, 2021. "Know Your Clients’ Behaviours: A Cluster Analysis of Financial Transactions," JRFM, MDPI, vol. 14(2), pages 1-29, January.
    3. Ron S. Jarmin & John M. Abowd & Robert Ashmead & Ryan Cumings-Menon & Nathan Goldschlag & Michael B. Hawes & Sallie Ann Keller & Daniel Kifer & Philip Leclerc & Jerome P. Reiter & Rolando A. Rodrígue, 2023. "An in-depth examination of requirements for disclosure risk assessment," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(43), pages 2220558120-, October.
    4. Shlomo, Natalie & Skinner, Chris J., 2010. "Assessing the protection provided by misclassification-based disclosure limitation methods for survey microdata," LSE Research Online Documents on Economics 39119, London School of Economics and Political Science, LSE Library.
    5. Ratul Das Chaudhury & Chongwoo Choe, 2023. "Digital Privacy: GDPR and Its Lessons for Australia," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 56(2), pages 204-220, June.
    6. Skinner, Chris J. & Shlomo, Natalie, 2008. "Assessing identification risk in survey microdata using log-linear models," LSE Research Online Documents on Economics 39112, London School of Economics and Political Science, LSE Library.
    7. Natalie Shlomo & Chris Skinner, 2022. "Measuring risk of re‐identification in microdata: State‐of‐the art and new directions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1644-1662, October.
    8. Sumit Dutta Chowdhury & George T. Duncan & Ramayya Krishnan & Stephen F. Roehrig & Sumitra Mukherjee, 1999. "Disclosure Detection in Multivariate Categorical Databases: Auditing Confidentiality Protection Through Two New Matrix Operators," Management Science, INFORMS, vol. 45(12), pages 1710-1723, December.
    9. Marta Cipriani & Lorenzo Di Rocco & Maria Puopolo & Marco Alfò, 2025. "A flexible parametric approach to synthetic patients generation using health data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 34(4), pages 639-662, September.
    10. Braathen, Christian & Thorsen, Inge & Ubøe, Jan, 2022. "Adjusting for Cell Suppression in Commuting Trip Data," Discussion Papers 2022/13, Norwegian School of Economics, Department of Business and Management Science.
    11. Marc Fadel & Julien Petot & Pierre-Antoine Gourraud & Alexis Descatha, 2024. "Flexibility of a large blindly synthetized avatar database for occupational research: Example from the CONSTANCES cohort for stroke and knee pain," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-9, July.
    12. Rehse, Dominik & Tremöhlen, Felix, 2020. "Fostering participation in digital public health interventions: The case of digital contact tracing," ZEW Discussion Papers 20-076, ZEW - Leibniz Centre for European Economic Research.
    13. Tesary Lin & Sanjog Misra, 2022. "Frontiers: The Identity Fragmentation Bias," Marketing Science, INFORMS, vol. 41(3), pages 433-440, May.
    14. Gilboa-Freedman, Gail & Smorodinsky, Rann, 2020. "On the properties that characterize privacy," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 59-68.
    15. James Jackson & Robin Mitra & Brian Francis & Iain Dove, 2022. "Using saturated count models for user‐friendly synthesis of large confidential administrative databases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1613-1643, October.
    16. Atabey, Ayça & Pothong, Kruakae & Livingstone, Sonia, 2023. "Glossary of terms relating to children’s digital lives," LSE Research Online Documents on Economics 119728, London School of Economics and Political Science, LSE Library.
    17. German Data Forum RatSWD (ed.), 2020. "Data collection using new information technology," RatSWD Output Series, German Data Forum (RatSWD), volume 6, number 6-6en, November.
    18. Shaobo Li & Matthew J. Schneider & Yan Yu & Sachin Gupta, 2023. "Reidentification Risk in Panel Data: Protecting for k -Anonymity," Information Systems Research, INFORMS, vol. 34(3), pages 1066-1088, September.
    19. George Kokolakis & Dimitris Fouskakis, 2008. "On the Discrepancy Measures for the Optimal Equal Probability Partitioning in Bayesian Multivariate Micro-Aggregation," Journal of Classification, Springer;The Classification Society, vol. 25(2), pages 209-224, November.
    20. Kokolakis, G. & Fouskakis, D., 2009. "Importance partitioning in micro-aggregation," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2439-2445, May.

    More about this item

    Keywords

    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:wikdps:308071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://www.wik.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.