IDEAS home Printed from https://ideas.repec.org/p/zbw/cfswop/680.html
   My bibliography  Save this paper

HARNet: A convolutional neural network for realized volatility forecasting

Author

Listed:
  • Reisenhofer, Rafael
  • Bayer, Xandro
  • Hautsch, Nikolaus

Abstract

Despite the impressive success of deep neural networks in many application areas, neural network models have so far not been widely adopted in the context of volatility forecasting. In this work, we aim to bridge the conceptual gap between established time series approaches, such as the Heterogeneous Autoregressive (HAR) model (Corsi, 2009), and state-of-the-art deep neural network models. The newly introduced HARNet is based on a hierarchy of dilated convolutional layers, which facilitates an exponential growth of the receptive field of the model in the number of model parameters. HARNets allow for an explicit initialization scheme such that before optimization, a HARNet yields identical predictions as the respective baseline HAR model. Particularly when considering the QLIKE error as a loss function, we find that this approach significantly stabilizes the optimization of HARNets. We evaluate the performance of HARNets with respect to three different stock market indexes. Based on this evaluation, we formulate clear guidelines for the optimization of HARNets and show that HARNets can substantially improve upon the forecasting accuracy of their respective HAR baseline models. In a qualitative analysis of the filter weights learnt by a HARNet, we report clear patterns regarding the predictive power of past information. Among information from the previous week, yesterday and the day before, yesterday's volatility makes by far the most contribution to today's realized volatility forecast. Moroever, within the previous month, the importance of single weeks diminishes almost linearly when moving further into the past.

Suggested Citation

  • Reisenhofer, Rafael & Bayer, Xandro & Hautsch, Nikolaus, 2022. "HARNet: A convolutional neural network for realized volatility forecasting," CFS Working Paper Series 680, Center for Financial Studies (CFS).
  • Handle: RePEc:zbw:cfswop:680
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/258975/1/1804116203.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    2. Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2023. "A Machine Learning Approach to Volatility Forecasting," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1680-1727.
    3. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    4. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    5. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    6. Jun Wei & Tao Ye & Zhe Zhang & Abd E.I.-Baset Hassanien, 2021. "A Machine Learning Approach to Evaluate the Performance of Rural Bank," Complexity, Hindawi, vol. 2021, pages 1-10, January.
    7. Yacine Aït-Sahalia & Jean Jacod, 2014. "High-Frequency Financial Econometrics," Economics Books, Princeton University Press, edition 1, number 10261.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessio Brini & Giacomo Toscano, 2024. "SpotV2Net: Multivariate Intraday Spot Volatility Forecasting via Vol-of-Vol-Informed Graph Attention Networks," Papers 2401.06249, arXiv.org, revised Aug 2024.
    2. Andrew J. Patton & Yasin Simsek, 2023. "Generalized Autoregressive Score Trees and Forests," Papers 2305.18991, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Zhang & Yihuang Zhang & Mihai Cucuringu & Zhongmin Qian, 2022. "Volatility forecasting with machine learning and intraday commonality," Papers 2202.08962, arXiv.org, revised Feb 2023.
    2. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    3. Francesco Audrino & Jonathan Chassot, 2024. "HARd to Beat: The Overlooked Impact of Rolling Windows in the Era of Machine Learning," Papers 2406.08041, arXiv.org.
    4. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    5. Harvey, Andrew & Palumbo, Dario, 2023. "Score-driven models for realized volatility," Journal of Econometrics, Elsevier, vol. 237(2).
    6. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    7. Liu, Guangqiang & Wang, Yan & Chen, Xiaodan & Zhang, Yifeng & Shang, Yue, 2020. "Forecasting volatility of the Chinese stock markets using TVP HAR-type models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    8. Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
    9. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    10. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    11. Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
    12. Wu, Xinyu & Hou, Xinmeng, 2019. "Forecasting realized variance using asymmetric HAR model with time-varying coefficients," Finance Research Letters, Elsevier, vol. 30(C), pages 89-95.
    13. Elena Ivona Dumitrescu & Georgiana-Denisa Banulescu, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," Post-Print hal-03331122, HAL.
    14. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.
    15. Clements, Adam & Preve, Daniel P.A., 2021. "A Practical Guide to harnessing the HAR volatility model," Journal of Banking & Finance, Elsevier, vol. 133(C).
    16. Yudong Wang & Zhiyuan Pan & Chongfeng Wu, 2017. "Time‐Varying Parameter Realized Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 566-580, August.
    17. Liu, Zhenya & Lu, Shanglin & Li, Bo & Wang, Shixuan, 2023. "Time series momentum and reversal: Intraday information from realized semivariance," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 54-77.
    18. Bucci, Andrea & Palomba, Giulio & Rossi, Eduardo, 2023. "The role of uncertainty in forecasting volatility comovements across stock markets," Economic Modelling, Elsevier, vol. 125(C).
    19. Hiroyuki Kawakatsu, 2022. "Local projection variance impulse response," Empirical Economics, Springer, vol. 62(3), pages 1219-1244, March.
    20. Oikonomou, Ioannis & Stancu, Andrei & Symeonidis, Lazaros & Wese Simen, Chardin, 2019. "The information content of short-term options," Journal of Financial Markets, Elsevier, vol. 46(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cfswop:680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/ifkcfde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.