IDEAS home Printed from
   My bibliography  Save this paper

Quantifying high-frequency market reactions to real-time news sentiment announcements


  • Groß-Klußmann, Axel
  • Hautsch, Nikolaus


We examine intra-day market reactions to news in stock-specific sentiment disclosures. Using pre-processed data from an automated news analytics tool based on linguistic pattern recognition we extract information on the relevance as well as the direction of company-specific news. Information-implied reactions in returns, volatility as well as liquidity demand and supply are quantified by a high-frequency VAR model using 20 second intervals. Analyzing a cross-section of stocks traded at the London Stock Exchange (LSE), we find market-wide robust news-dependent responses in volatility and trading volume. However, this is only true if news items are classified as highly relevant. Liquidity supply reacts less distinctly due to a stronger influence of idiosyncratic noise. Furthermore, evidence for abnormal highfrequency returns after news in sentiments is shown.

Suggested Citation

  • Groß-Klußmann, Axel & Hautsch, Nikolaus, 2009. "Quantifying high-frequency market reactions to real-time news sentiment announcements," CFS Working Paper Series 2009/31, Center for Financial Studies (CFS).
  • Handle: RePEc:zbw:cfswop:200931

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    2. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
    3. Malatesta, Paul H. & Thompson, Rex, 1985. "Partially anticipated events: A model of stock price reactions with an application to corporate acquisitions," Journal of Financial Economics, Elsevier, vol. 14(2), pages 237-250, June.
    4. Mitchell, Mark L & Mulherin, J Harold, 1994. " The Impact of Public Information on the Stock Market," Journal of Finance, American Finance Association, vol. 49(3), pages 923-950, July.
    5. DeGennaro, Ramon P. & Shrieves, Ronald E., 1997. "Public information releases, private information arrival and volatility in the foreign exchange market," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 295-315, December.
    6. John R. Graham & Jennifer L. Koski & Uri Loewenstein, 2006. "Information Flow and Liquidity around Anticipated and Unanticipated Dividend Announcements," The Journal of Business, University of Chicago Press, vol. 79(5), pages 2301-2336, September.
    7. Kalev, Petko S. & Liu, Wai-Man & Pham, Peter K. & Jarnecic, Elvis, 2004. "Public information arrival and volatility of intraday stock returns," Journal of Banking & Finance, Elsevier, vol. 28(6), pages 1441-1467, June.
    8. repec:bla:joares:v:6:y:1968:i::p:67-92 is not listed on IDEAS
    9. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    10. Cragg, John G, 1971. "Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods," Econometrica, Econometric Society, vol. 39(5), pages 829-844, September.
    11. Ederington, Louis H & Lee, Jae Ha, 1993. " How Markets Process Information: News Releases and Volatility," Journal of Finance, American Finance Association, vol. 48(4), pages 1161-1191, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Zhi-Qiang Jiang & Wen-Jie Xie & Xiong Xiong & Wei Zhang & Yong-Jie Zhang & W. -X. Zhou, 2012. "Trading networks, abnormal motifs and stock manipulation," Papers 1301.0007,

    More about this item


    Firm-specific News; News Sentiment; High-frequency Data; Volatility; Liquidity; Abnormal Returns;

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cfswop:200931. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.