IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Algorithmus und Programm zur Bestimmung der monotonen Kleinst-Quadrate Lösung bei partiellen Präordnungen

Listed author(s):
  • Hansohm, Jürgen
Registered author(s):

    Sei A = {1, . . . , n} eine endliche Menge und f : A --> IR gegeben. Im folgenden Beitrag werden Algorithmen zur Ermittlung der Kleinst-Quadrate Regression g : A --> IR von f beschrieben, wobei g monoton bzgl. einer nicht notwendigerweise vollständigen Präordnung auf A ist. Neben den theoretischen Grundlagen und dem allgemeinen Fall werden auch die Spezialfälle der hierarchischen und vollständigen Präordnung beschrieben. Darüber hinaus werden Fehlerabschätzungen zum Optimum angegeben. Sämtliche Algorithmen sind in dem Modul PartOrder implementiert, dessen Anwendung an einem Beispiel kurz beschrieben wird. Das Modul basiert auf dem .NET Framework und kann unter verschiedenen Programmiersprachen (Visual Basic, C++, C#, etc.) aufgerufen werden.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Universität Augsburg, Institut für Statistik und Mathematische Wirtschaftstheorie in its series Arbeitspapiere zur mathematischen Wirtschaftsforschung with number 187.

    in new window

    Date of creation: 2004
    Handle: RePEc:zbw:augamw:187
    Contact details of provider: Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Forrest Young & Jan Leeuw & Yoshio Takane, 1976. "Regression with qualitative and quantitative variables: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 41(4), pages 505-529, December.
    2. Forrest Young & Yoshio Takane & Jan Leeuw, 1978. "The principal components of mixed measurement level multivariate data: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 43(2), pages 279-281, June.
    3. Forrest Young, 1981. "Quantitative analysis of qualitative data," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 357-388, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:zbw:augamw:187. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.