IDEAS home Printed from https://ideas.repec.org/p/wuu/wpaper/hsc0902.html
   My bibliography  Save this paper

Calibration of the subdiffusive Black–Scholes model

Author

Listed:
  • Sebastian Orzel
  • Aleksander Weron

Abstract

In this paper we discuss subdiffusive mechanism for the description of some stock markets. We analyse the fractional Black–Scholes model in which the price of the underlying instrument evolves according to the subdiffusive geometric Brownian motion. We show how to efficiently estimate the parameters for the subdiffusive Black–Scholes formula i.e. parameter alpha responsible for distribution of length of constant stock prices periods and sigma — volatility parameter. A simple method how to price subdiffusive European call and put options by using Monte Carlo approach is presented.

Suggested Citation

  • Sebastian Orzel & Aleksander Weron, 2009. "Calibration of the subdiffusive Black–Scholes model," HSC Research Reports HSC/09/02, Hugo Steinhaus Center, Wroclaw University of Technology.
  • Handle: RePEc:wuu:wpaper:hsc0902
    as

    Download full text from publisher

    File URL: http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_09_02.pdf
    File Function: Original version, 2009
    Download Restriction: no

    References listed on IDEAS

    as
    1. Aleksander Janicki & Aleksander Weron, 1994. "Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook9401, June.
    2. Simon Hurst & Eckhard Platen & Svetlozar Rachev, 1997. "Subordinated Market Index Models: A Comparison," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 4(2), pages 97-124, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian, Orzeł & Agnieszka, Wyłomańska, 2010. "Calibration of the subdiffusive arithmetic Brownian motion with tempered stable waiting-times," MPRA Paper 28593, University Library of Munich, Germany.

    More about this item

    Keywords

    Black-Scholes model; option price; Monte Carlo simulation; fractional Fokker-Planck Equation; time-changed Brownian motion; martingale measure;

    JEL classification:

    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wuu:wpaper:hsc0902. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rafal Weron). General contact details of provider: http://edirc.repec.org/data/hspwrpl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.