IDEAS home Printed from https://ideas.repec.org/p/wse/wpaper/15.html
   My bibliography  Save this paper

Blocks adjustment – reduction of bias and variance of detrended fluctuation analysis using Monte Carlo simulation

Author

Listed:
  • Sebastian Michalski

    (Department of Applied Econometrics, Warsaw School of Economics)

Abstract

The length of minimal and maximal blocks equally distant on log-log scale versus fluctuation function considerably influences bias and variance of DFA. Through a number of extensive Monte Carlo simulations and different fractional Brownian motion/fractional Gaussian noise generators, we found the pair of minimal and maximal blocks that minimizes the sum of mean-squared error of estimated Hurst exponents for the series of length N = 2^p, p = 7, . . . , 15. Sensitivity of DFA to sort-range correlations was examined using ARFIMA(p, d, q) generator. Due to the bias of the estimator for anti-persistent processes, we narrowed down the range of Hurst exponent to 1/2 =

Suggested Citation

  • Sebastian Michalski, 2006. "Blocks adjustment – reduction of bias and variance of detrended fluctuation analysis using Monte Carlo simulation," Working Papers 15, Department of Applied Econometrics, Warsaw School of Economics.
  • Handle: RePEc:wse:wpaper:15
    as

    Download full text from publisher

    File URL: http://kolegia.sgh.waw.pl/pl/KAE/struktura/IE/struktura/ZES/Documents/Working_Papers/aewp08-06.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raymond, Gary M. & Bassingthwaighte, James B., 1999. "Deriving dispersional and scaled windowed variance analyses using the correlation function of discrete fractional Gaussian noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 265(1), pages 85-96.
    2. Coeurjolly, Jean-Francois, 2000. "Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 5(i07).
    3. Kantelhardt, Jan W & Koscielny-Bunde, Eva & Rego, Henio H.A & Havlin, Shlomo & Bunde, Armin, 2001. "Detecting long-range correlations with detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 441-454.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gulich, Damián & Zunino, Luciano, 2014. "A criterion for the determination of optimal scaling ranges in DFA and MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 17-30.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michalski, Sebastian, 2008. "Blocks adjustment—reduction of bias and variance of detrended fluctuation analysis using Monte Carlo simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 217-242.
    2. Almurad, Zainy M.H. & Delignières, Didier, 2016. "Evenly spacing in Detrended Fluctuation Analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 63-69.
    3. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    5. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    6. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    7. Currenti, Gilda & Negro, Ciro Del & Lapenna, Vincenzo & Telesca, Luciano, 2005. "Fluctuation analysis of the hourly time variability of volcano-magnetic signals recorded at Mt. Etna Volcano, Sicily (Italy)," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1921-1929.
    8. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    9. John-Fritz Thony & Jean Vaillant, 2022. "Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    10. Gerlich, Nikolas & Rostek, Stefan, 2015. "Estimating serial correlation and self-similarity in financial time series—A diversification approach with applications to high frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 84-98.
    11. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    12. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical shape function of limit-order books in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5182-5188.
    13. Delignières, Didier & Marmelat, Vivien, 2014. "Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 47-60.
    14. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 182-198.
    15. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    16. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    17. Gu, Gao-Feng & Ren, Fei & Ni, Xiao-Hui & Chen, Wei & Zhou, Wei-Xing, 2010. "Empirical regularities of opening call auction in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(2), pages 278-286.
    18. Wei, Kun & Zhang, Youxin & Luo, Yi, 2018. "Variance-mediated multifractal analysis of group participation in chasing a single dangerous prey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1275-1287.
    19. Marina Resta & Davide Sciutti, 2003. "Spot price dynamics in deregulated power markets," Econometrics 0312002, University Library of Munich, Germany.
    20. Jean-Christophe Breton & Jean-François Coeurjolly, 2012. "Confidence intervals for the Hurst parameter of a fractional Brownian motion based on finite sample size," Statistical Inference for Stochastic Processes, Springer, vol. 15(1), pages 1-26, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wse:wpaper:15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marcin Owczarczuk The email address of this maintainer does not seem to be valid anymore. Please ask Marcin Owczarczuk to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/dxwawpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.