IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Neural Networks as tools for increasing the forecast and control of complex economic systems. Economics & Complexity - 1999\Vol2 N2 Spec. NEU 99-a

  • Salzano Massimo

    (Università di Salerno Dipartimento di Scienze Economiche e Statistiche)

The idea that NN can be usefully used for a better understanding of economic complex mechanisms is present in the literature. Our interest is to show that this is correct if we use the larger possible amounts of information that data conveys. At this end we will start with the consideration expressed by Mandelbrot that a traditional model could explain the economic behaviour 95% of time, but that in terms of amount the remaining 5% means quite the complete set of phenomena that we want to understand. We need complex models for dealing with this part. For their characteristic of being general approximators NNs seem one of most interesting instrument. This is true both for macroeconomic and for financial data.Often, the economic system is so complex that, to grasp the meaning of the information conveyed by the data, even a general approximator like NN is not enough. Larger information could be obtained using 2 or more instruments in cascade or in parallel. We will concentrate on this topic. We will try to illustrate how the combination of tools is possible. Applications will refer to Italian macroeconomic and financial data.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://128.118.178.162/eps/mac/papers/0501/0501012.pdf
Download Restriction: no

Paper provided by EconWPA in its series Macroeconomics with number 0501012.

as
in new window

Length: 10 pages
Date of creation: 07 Jan 2005
Date of revision:
Handle: RePEc:wpa:wuwpma:0501012
Note: Type of Document - pdf; pages: 10
Contact details of provider: Web page: http://128.118.178.162

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Haefke, Christian & Helmenstein, Christian, 1996. "Neural Networks in the Capital Markets: An Application to Index Forecasting," Computational Economics, Society for Computational Economics, vol. 9(1), pages 37-50, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpma:0501012. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.