IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpma/0501012.html
   My bibliography  Save this paper

Neural Networks as tools for increasing the forecast and control of complex economic systems. Economics & Complexity - 1999\Vol2 N2 Spec. NEU 99-a

Author

Listed:
  • Salzano Massimo

    (Università di Salerno Dipartimento di Scienze Economiche e Statistiche)

Abstract

The idea that NN can be usefully used for a better understanding of economic complex mechanisms is present in the literature. Our interest is to show that this is correct if we use the larger possible amounts of information that data conveys. At this end we will start with the consideration expressed by Mandelbrot that a traditional model could explain the economic behaviour 95% of time, but that in terms of amount the remaining 5% means quite the complete set of phenomena that we want to understand. We need complex models for dealing with this part. For their characteristic of being general approximators NNs seem one of most interesting instrument. This is true both for macroeconomic and for financial data.Often, the economic system is so complex that, to grasp the meaning of the information conveyed by the data, even a general approximator like NN is not enough. Larger information could be obtained using 2 or more instruments in cascade or in parallel. We will concentrate on this topic. We will try to illustrate how the combination of tools is possible. Applications will refer to Italian macroeconomic and financial data.

Suggested Citation

  • Salzano Massimo, 2005. "Neural Networks as tools for increasing the forecast and control of complex economic systems. Economics & Complexity - 1999\Vol2 N2 Spec. NEU 99-a," Macroeconomics 0501012, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpma:0501012
    Note: Type of Document - pdf; pages: 10
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/mac/papers/0501/0501012.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    2. Haefke, Christian & Helmenstein, Christian, 1996. "Neural Networks in the Capital Markets: An Application to Index Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 9(1), pages 37-50, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, November.
    3. Joao Felipe Gueiros & Hemanth Chandravamsi & Steven H. Frankel, 2025. "Deep Learning vs. Black-Scholes: Option Pricing Performance on Brazilian Petrobras Stocks," Papers 2504.20088, arXiv.org.
    4. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    5. Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
    6. Harald Badinger & Ingrid Kubin, 2007. "Vom kurzfristigen zum mittelfristigen Gleichgewicht in einer offenen Volkswirtschaft unter fixen und flexiblen Wechselkursen," Department of Economics Working Papers wuwp101, Vienna University of Economics and Business, Department of Economics.
    7. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    8. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    9. Anna Grodecka-Messi, 2019. "Subprime borrowers, securitization and the transmission of business cycles," Canadian Journal of Economics, Canadian Economics Association, vol. 52(4), pages 1600-1654, November.
    10. Dennis Bams & Thorsten Lehnert & Christian C. P. Wolff, 2009. "Loss Functions in Option Valuation: A Framework for Selection," Management Science, INFORMS, vol. 55(5), pages 853-862, May.
    11. Weiping Li & Su Chen, 2018. "The Early Exercise Premium In American Options By Using Nonparametric Regressions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-29, November.
    12. Cabrera Llanos Agustín Ignacio & Ortíz Arango Francisco, 2012. "Pronóstico del rendimiento del IPC (Índice de Precios y Cotizaciones)mediante el uso de redes neuronales diferenciales," Contaduría y Administración, Accounting and Management, vol. 57(2), pages 63-81, abril-jun.
    13. Gerlinde Fellner & Matthias Sutter, 2009. "Causes, Consequences, and Cures of Myopic Loss Aversion - An Experimental Investigation," Economic Journal, Royal Economic Society, vol. 119(537), pages 900-916, April.
    14. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    15. Minting Zhu & Mancang Wang & Jingyu Wu, 2024. "An Option Pricing Formula for Active Hedging Under Logarithmic Investment Strategy," Mathematics, MDPI, vol. 12(23), pages 1-20, December.
    16. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    17. Stavros Degiannakis & Evdokia Xekalaki, 2007. "Assessing the performance of a prediction error criterion model selection algorithm in the context of ARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 149-171.
    18. Haoran Wang & Xun Yu Zhou, 2020. "Continuous‐time mean–variance portfolio selection: A reinforcement learning framework," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1273-1308, October.
    19. Guo, Jingjun & Kang, Weiyi & Wang, Yubing, 2024. "Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    20. repec:wyi:journl:002108 is not listed on IDEAS
    21. Annemarie Steidl & Engelbert Stockhammer, 2007. "Coming and leaving. Internal mobility in late Imperial Austria," Department of Economics Working Papers wuwp107, Vienna University of Economics and Business, Department of Economics.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • E - Macroeconomics and Monetary Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpma:0501012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA The email address of this maintainer does not seem to be valid anymore. Please ask EconWPA to update the entry or send us the correct address (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.