IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/0504010.html
   My bibliography  Save this paper

Proxy simulation schemes using likelihood ratio weighted Monte Carlo for generic robust Monte-Carlo sensitivities and high accuracy drift approximation (with applications to the LIBOR Market Model)

Author

Listed:
  • Christian P. Fries

    (Universität Heidelberg)

  • Joerg Kampen

    (Universität Heidelberg)

Abstract

We consider a generic framework for generating likelihood ratio weighted Monte Carlo simulation paths, where we use one simulation scheme K° (proxy scheme) to generate realizations and then reinterpret them as realizations of another scheme K* (target scheme) by adjusting measure (via likelihood ratio) to match the distribution of K° such that E( f(K*) | F_t ) = E( f(K°) w | F_t ). This is done numerically in every time step, on every path. This makes the approach independent of the product (the function f) and even of the model, it only depends on the numerical scheme. The approach is essentially a numerical version of the likelihood ratio method [Broadie & Glasserman, 1996] and Malliavin's Calculus [Fournie et al., 1999; Malliavin, 1997] reconsidered on the level of the discrete numerical simulation scheme. Since the numerical scheme represents a time discrete stochastic process sampled on a discrete probability space the essence of the method may be motivated without a deeper mathematical understanding of the time continuous theory (e.g. Malliavin's Calculus). The framework is completely generic and may be used for high accuracy drift approximations and the robust calculation of partial derivatives of expectations w.r.t. model parameters (i.e. sensitivities, aka. Greeks) by applying finite differences by reevaluating the expectation with a model with shifted parameters. We present numerical results using a Monte-Carlo simulation of the LIBOR Market Model for benchmarking.

Suggested Citation

  • Christian P. Fries & Joerg Kampen, 2005. "Proxy simulation schemes using likelihood ratio weighted Monte Carlo for generic robust Monte-Carlo sensitivities and high accuracy drift approximation (with applications to the LIBOR Market Model)," Finance 0504010, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpfi:0504010
    Note: Type of Document - pdf; pages: 27
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/0504/0504010.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    2. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    3. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    4. Eric Benhamou, 2003. "Optimal Malliavin Weighting Function for the Computation of the Greeks," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 37-53, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Detemple, Jerome & Rindisbacher, Marcel, 2007. "Monte Carlo methods for derivatives of options with discontinuous payoffs," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3393-3417, April.
    2. Boyle, Phelim & Potapchik, Alexander, 2008. "Prices and sensitivities of Asian options: A survey," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 189-211, February.
    3. Maria Elvira Mancino & Simona Sanfelici, 2020. "Nonparametric Malliavin–Monte Carlo Computation of Hedging Greeks," Risks, MDPI, vol. 8(4), pages 1-17, November.
    4. Jakša Cvitanić & Jin Ma & Jianfeng Zhang, 2003. "Efficient Computation of Hedging Portfolios for Options with Discontinuous Payoffs," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 135-151, January.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    7. Arturo Kohatsu-Higa & Miquel Montero, 2001. "An application of Malliavin Calculus to Finance," Papers cond-mat/0111563, arXiv.org.
    8. Jérôme Detemple & René Garcia & Marcel Rindisbacher, 2005. "Asymptotic Properties of Monte Carlo Estimators of Derivatives," Management Science, INFORMS, vol. 51(11), pages 1657-1675, November.
    9. Aintablian, Sebouh & Khoury, Wissam El, 2017. "A simulation on the presence of competing bidders in mergers and acquisitions," Finance Research Letters, Elsevier, vol. 22(C), pages 233-243.
    10. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    11. Dan Pirjol & Lingjiong Zhu, 2023. "Sensitivities of Asian options in the Black-Scholes model," Papers 2301.06460, arXiv.org.
    12. Hyungbin Park, 2018. "Sensitivity analysis of long-term cash flows," Finance and Stochastics, Springer, vol. 22(4), pages 773-825, October.
    13. Mascagni Michael & Qiu Yue & Hin Lin-Yee, 2014. "High performance computing in quantitative finance: A review from the pseudo-random number generator perspective," Monte Carlo Methods and Applications, De Gruyter, vol. 20(2), pages 101-120, June.
    14. Chen, Nan & Glasserman, Paul, 2007. "Malliavin Greeks without Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1689-1723, November.
    15. Wensheng Yang & Jingtang Ma & Zhenyu Cui, 2021. "Analysis of Markov chain approximation for Asian options and occupation-time derivatives: Greeks and convergence rates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 359-412, April.
    16. Jiun Hong Chan and Mark Joshi, 2012. "Optimal Limit Methods for Computing Sensitivities of," Department of Economics - Working Papers Series 1142, The University of Melbourne.
    17. Hyungbin Park, 2021. "Influence of risk tolerance on long-term investments: A Malliavin calculus approach," Papers 2104.00911, arXiv.org.
    18. Muroi, Yoshifumi & Suda, Shintaro, 2017. "Computation of Greeks in jump-diffusion models using discrete Malliavin calculus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 140(C), pages 69-93.
    19. John Board & Charles Sutcliffe & William T. Ziemba, 2003. "Applying Operations Research Techniques to Financial Markets," Interfaces, INFORMS, vol. 33(2), pages 12-24, April.
    20. D. Baños & T. Meyer-Brandis & F. Proske & S. Duedahl, 2017. "Computing deltas without derivatives," Finance and Stochastics, Springer, vol. 21(2), pages 509-549, April.

    More about this item

    Keywords

    Monte-Carlo; Likelihood Ratio; Malliavin Calculus; Sensitivities; Greeks;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0504010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.