IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v20y2014i2p101-120n2.html
   My bibliography  Save this article

High performance computing in quantitative finance: A review from the pseudo-random number generator perspective

Author

Listed:
  • Mascagni Michael

    (Departments of Computer Science, Mathematics & Scientific Computing, and Graduate Program in Molecular Biophysics, Florida State University, Tallahassee, FL 32308-4530, USA)

  • Qiu Yue

    (Departments of Computer Science, Mathematics & Scientific Computing, Florida State University, Tallahassee, FL 32308-4530, USA)

  • Hin Lin-Yee

    (Department of Mathematics & Statistics, Curtin University, Bentley, WA 6102, Australia)

Abstract

The great demand for high computational capabilities is omnipresent in every facet of modern financial activities, ranging from financial product pricing, trading and hedging at the front desk on the one end to risk management activities for in house monitoring and legislative compliance on the other. While this demand is met by scalable high performance computing, along with it come new challenges. As a notable proportion of financial computations involve the use of pseudo-random numbers, the engagement of a large number of parallel threads leads to consumption of large amount of pseudo-random numbers, uncovering potential intra-thread and inter-thread correlation that will lead to bias and loss of efficiency in the computation. This paper reviews, in the setting of derivative instrument pricing, the performance of some commonly used scalable pseudo-random number generators constructed based on different parallelization strategies: (1) parameterization (SPRNG), (2) sequence-splitting (TRNG and RngStream), and (3) cryptography (Random123). In addition, the potential impact of intra-thread and inter-thread correlation in pricing and sensitivity analysis of some common contingent claims via Monte Carlo simulation is examined.

Suggested Citation

  • Mascagni Michael & Qiu Yue & Hin Lin-Yee, 2014. "High performance computing in quantitative finance: A review from the pseudo-random number generator perspective," Monte Carlo Methods and Applications, De Gruyter, vol. 20(2), pages 101-120, June.
  • Handle: RePEc:bpj:mcmeap:v:20:y:2014:i:2:p:101-120:n:2
    DOI: 10.1515/mcma-2013-0020
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2013-0020
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2013-0020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Rubenthaler, Sylvain, 2003. "Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 311-349, February.
    2. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    3. Sana Ben Hamida & Rama Cont, 2005. "Recovering Volatility from Option Prices by Evolutionary Optimization," Post-Print hal-02490586, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    2. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
    3. Choi, Jaehyuk & Kwok, Yue Kuen, 2024. "Simulation schemes for the Heston model with Poisson conditioning," European Journal of Operational Research, Elsevier, vol. 314(1), pages 363-376.
    4. David Heath & Eckhard Platen, 2014. "A Monte Carlo Method using PDE Expansions for a Diversifed Equity Index Model," Research Paper Series 350, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Taufer, Emanuele & Leonenko, Nikolai, 2009. "Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.
    6. Ioannis Kyriakou & Panos K. Pouliasis & Nikos C. Papapostolou, 2016. "Jumps and stochastic volatility in crude oil prices and advances in average option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1859-1873, December.
    7. Remigijus Mikulevičius & Changyong Zhang, 2024. "Convergence of Weak Euler Approximation for Nondegenerate Stochastic Differential Equations Driven by Point and Martingale Measures," Journal of Theoretical Probability, Springer, vol. 37(1), pages 43-80, March.
    8. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    9. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    10. Jaehyuk Choi, 2024. "Exact simulation scheme for the Ornstein-Uhlenbeck driven stochastic volatility model with the Karhunen-Lo\`eve expansions," Papers 2402.09243, arXiv.org.
    11. Jin Sun & Eckhard Platen, 2019. "Benchmarked Risk Minimizing Hedging Strategies for Life Insurance Policies," Research Paper Series 399, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. Amici, Giovanni & Ballotta, Laura & Semeraro, Patrizia, 2025. "Multivariate additive subordination with applications in finance," European Journal of Operational Research, Elsevier, vol. 321(3), pages 1004-1020.
    13. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen & Erik Schlögl, 2009. "Alternative Defaultable Term Structure Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 1-31, March.
    14. Florian Aichinger & Sascha Desmettre, 2025. "Pricing of geometric Asian options in the Volterra-Heston model," Review of Derivatives Research, Springer, vol. 28(1), pages 1-30, April.
    15. Susanne Griebsch & Uwe Wystup, 2011. "On the valuation of fader and discrete barrier options in Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 693-709.
    16. A. Monteiro & R. Tütüncü & L. Vicente, 2011. "Estimation of risk-neutral density surfaces," Computational Management Science, Springer, vol. 8(4), pages 387-414, November.
    17. Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
    18. Sergii Kuchuk-Iatsenko & Yuliya Mishura, 2016. "Option pricing in the model with stochastic volatility driven by Ornstein--Uhlenbeck process. Simulation," Papers 1601.01128, arXiv.org.
    19. Michael A. Kouritzin, 2018. "Explicit Heston Solutions And Stochastic Approximation For Path-Dependent Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-45, February.
    20. Kim, Jerim & Kim, Bara & Moon, Kyoung-Sook & Wee, In-Suk, 2012. "Valuation of power options under Heston's stochastic volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(11), pages 1796-1813.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:20:y:2014:i:2:p:101-120:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.