IDEAS home Printed from https://ideas.repec.org/p/mlb/wpaper/1142.html
   My bibliography  Save this paper

Optimal Limit Methods for Computing Sensitivities of

Author

Listed:
  • Jiun Hong Chan and Mark Joshi

Abstract

We introduce a new approach to computing sensitivities of discontinuous integrals.The methodology is generic in that it only requires knowledge of the simulation scheme and the location of the integrand's singularities. The methodology is proven to be optimal in terms of minimizing the variance of the measure changes caused by the elimination of the discontinuities for finite bump sizes. An efficient adjoint implementation of the small bump-size limit is discussed, and the method is shown to be effective for a number of natural examples involving triggerable interest rate derivative securities.

Suggested Citation

  • Jiun Hong Chan and Mark Joshi, 2012. "Optimal Limit Methods for Computing Sensitivities of," Department of Economics - Working Papers Series 1142, The University of Melbourne.
  • Handle: RePEc:mlb:wpaper:1142
    as

    Download full text from publisher

    File URL: http://fbe.unimelb.edu.au/economics/research/workingpapers
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joshi, Mark & Yang, Chao, 2011. "Fast delta computations in the swap-rate market model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 764-775, May.
    2. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    3. Eric Benhamou, 2003. "Optimal Malliavin Weighting Function for the Computation of the Greeks," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 37-53, January.
    4. Christian P. Fries & Mark S. Joshi, 2011. "Perturbation Stable Conditional Analytic Monte-Carlo Pricing Scheme For Auto-Callable Products," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(02), pages 197-219.
    5. Heidergott, Bernd & Vazquez-Abad, Felisa J. & Volk-Makarewicz, Warren, 2008. "Sensitivity estimation for Gaussian systems," European Journal of Operational Research, Elsevier, vol. 187(1), pages 193-207, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frazier, David T. & Oka, Tatsushi & Zhu, Dan, 2019. "Indirect inference with a non-smooth criterion function," Journal of Econometrics, Elsevier, vol. 212(2), pages 623-645.
    2. Christian P. Fries, 2018. "Stochastic Algorithmic Differentiation of (Expectations of) Discontinuous Functions (Indicator Functions)," Papers 1811.05741, arXiv.org, revised Nov 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kloeden Peter E. & Sanz-Chacón Carlos, 2011. "Efficient price sensitivity estimation of financial derivatives by weak derivatives," Monte Carlo Methods and Applications, De Gruyter, vol. 17(1), pages 47-75, January.
    2. Koch, Erwan & Robert, Christian Y., 2022. "Stochastic derivative estimation for max-stable random fields," European Journal of Operational Research, Elsevier, vol. 302(2), pages 575-588.
    3. Shaolong Tong & Guangwu Liu, 2016. "Importance Sampling for Option Greeks with Discontinuous Payoffs," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 223-235, May.
    4. Gilles Pag`es & Olivier Pironneau & Guillaume Sall, 2016. "Vibrato and automatic differentiation for high order derivatives and sensitivities of financial options," Papers 1606.06143, arXiv.org.
    5. Zhenyu Cui & Michael C. Fu & Jian-Qiang Hu & Yanchu Liu & Yijie Peng & Lingjiong Zhu, 2020. "On the Variance of Single-Run Unbiased Stochastic Derivative Estimators," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 390-407, April.
    6. Christian P. Fries & Joerg Kampen, 2005. "Proxy simulation schemes using likelihood ratio weighted Monte Carlo for generic robust Monte-Carlo sensitivities and high accuracy drift approximation (with applications to the LIBOR Market Model)," Finance 0504010, University Library of Munich, Germany.
    7. Guangwu Liu & Liu Jeff Hong, 2009. "Kernel estimation of quantile sensitivities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 511-525, September.
    8. Galai, Dan & Raviv, Alon & Wiener, Zvi, 2007. "Liquidation triggers and the valuation of equity and debt," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3604-3620, December.
    9. Xiaoqun Wang, 2016. "Handling Discontinuities in Financial Engineering: Good Path Simulation and Smoothing," Operations Research, INFORMS, vol. 64(2), pages 297-314, April.
    10. Maria Elvira Mancino & Simona Sanfelici, 2020. "Nonparametric Malliavin–Monte Carlo Computation of Hedging Greeks," Risks, MDPI, vol. 8(4), pages 1-17, November.
    11. Lingyan Cao & Zheng-Feng Guo, 2012. "A Comparison Of Delta Hedging Under Two Price Distribution Assumptions By Likelihood Ratio," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 6(1), pages 25-34.
    12. Silvana M. Pesenti & Pietro Millossovich & Andreas Tsanakas, 2023. "Differential Sensitivity in Discontinuous Models," Papers 2310.06151, arXiv.org.
    13. Lingyan Cao & Zheng-Feng Guo, 2012. "A Comparison Of Gradient Estimation Techniques For European Call Options," Accounting & Taxation, The Institute for Business and Finance Research, vol. 4(1), pages 75-81.
    14. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    15. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    16. Arturo Kohatsu-Higa & Miquel Montero, 2001. "An application of Malliavin Calculus to Finance," Papers cond-mat/0111563, arXiv.org.
    17. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
    18. Jérôme Detemple & René Garcia & Marcel Rindisbacher, 2005. "Asymptotic Properties of Monte Carlo Estimators of Derivatives," Management Science, INFORMS, vol. 51(11), pages 1657-1675, November.
    19. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.
    20. Fard, Farzad Alavi & Siu, Tak Kuen, 2013. "Pricing participating products with Markov-modulated jump–diffusion process: An efficient numerical PIDE approach," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 712-721.

    More about this item

    Keywords

    Price Sensitivities; Monte-Carlo Greeks; Partial Proxy Simulation Scheme; Minimal Partial;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mlb:wpaper:1142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dandapani Lokanathan (email available below). General contact details of provider: https://edirc.repec.org/data/demelau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.