IDEAS home Printed from https://ideas.repec.org/p/mlb/wpaper/1142.html
   My bibliography  Save this paper

Optimal Limit Methods for Computing Sensitivities of

Author

Listed:
  • Jiun Hong Chan and Mark Joshi

Abstract

We introduce a new approach to computing sensitivities of discontinuous integrals.The methodology is generic in that it only requires knowledge of the simulation scheme and the location of the integrand's singularities. The methodology is proven to be optimal in terms of minimizing the variance of the measure changes caused by the elimination of the discontinuities for finite bump sizes. An efficient adjoint implementation of the small bump-size limit is discussed, and the method is shown to be effective for a number of natural examples involving triggerable interest rate derivative securities.

Suggested Citation

  • Jiun Hong Chan and Mark Joshi, 2012. "Optimal Limit Methods for Computing Sensitivities of," Department of Economics - Working Papers Series 1142, The University of Melbourne.
  • Handle: RePEc:mlb:wpaper:1142
    as

    Download full text from publisher

    File URL: http://fbe.unimelb.edu.au/economics/research/workingpapers
    Download Restriction: no

    References listed on IDEAS

    as
    1. J. E. Stiglitz, 1999. "Introduction," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 28(3), pages 249-254, November.
    2. Joshi, Mark & Yang, Chao, 2011. "Fast delta computations in the swap-rate market model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 764-775, May.
    3. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    4. Heidergott, Bernd & Vazquez-Abad, Felisa J. & Volk-Makarewicz, Warren, 2008. "Sensitivity estimation for Gaussian systems," European Journal of Operational Research, Elsevier, vol. 187(1), pages 193-207, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David T. Frazier & Dan Zhu, 2017. "Derivative-Based Optimization with a Non-Smooth Simulated Criterion," Papers 1708.02365, arXiv.org.

    More about this item

    Keywords

    Price Sensitivities; Monte-Carlo Greeks; Partial Proxy Simulation Scheme; Minimal Partial;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mlb:wpaper:1142. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dandapani Lokanathan). General contact details of provider: http://edirc.repec.org/data/demelau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.