IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Statistical Inference of a Bivariate Proportional Hazard Model with Grouped Data

Listed author(s):
  • Mark Yuying An

    (Duke Uniersity)

This paper studies the estimation of a semiparametric bivariate proportional hazard model from event time data under interval censoring. As a direct generalization of the bivariate exponential distribution of Marshall and Olkin, the model, on the one hand, controls for the effects of observed covariates, and on the other, achieves great flexibility through nonparametrically specified baseline hazards. The model is most relevant in analyzing the joint distribution of two event times arising from "systems of two components". Examples include the two infection times of the left and the right kidneys of patients and the two retirement times of married couples. To estimate this semiparametric model from grouped data, we propose a maximum likelihood estimator and a minimum chi-square estimator. Both estimation methods exploit the fact that the most flexible model structure that can be identified with grouped data is finite-dimensional. Compared with the maximum likelihood estimation, the minimum chi-square procedure is computationally more attractive but applies only to "many observations per cell" cases where the covariates are either categorical or amendable to sensible grouping. Specification tests for different model assumptions are also discussed.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

File URL:
Download Restriction: no

Paper provided by EconWPA in its series Econometrics with number 9611005.

in new window

Length: 22 pages
Date of creation: 17 Nov 1996
Handle: RePEc:wpa:wuwpem:9611005
Note: Type of Document - laTex; prepared on UNIX Sparc TeX; to print on PostScript; pages: 22 ; figures: request from author. We never published this piece and now we would like to reduce our mailing and xerox cost by posting it.
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. An, Mark Yuying, 1996. "Semiparametric Estimation of Willingness to Pay Distributions," Working Papers 96-20, Duke University, Department of Economics.
  2. Mark Yuying An & Roberto Ayala, 1996. "Nonparametric Estimation of a Survivor Function with Across- Interval-Censored Data," Econometrics 9611003, EconWPA.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:9611005. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.