IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0510002.html
   My bibliography  Save this paper

Compositional Time Series: Past and Present

Author

Listed:
  • Juan M.C. Larrosa

    (CONICET-Universidad Nacional del Sur)

Abstract

This survey reviews diverse academic production on compositional dynamic series analysis. Although time dimension of compositional series has been little investigated, this kind of data structure is widely available and utilized in social sciences research. This way, a review of the state-of-the-art on this topic is required for scientist to understand the available options. The review comprehends the analysis of several techniques like autoregresive integrate moving average (ARIMA) analysis, compositional vector autoregression systems (CVAR) and state space techniques but most of these are developed under Bayesian frameworks. As conclusion, this branch of the compositional statistical analysis still requires a lot of advances and updates and, for this same reason, is a fertile field for future research. Social scientists should pay attention to future developments due to the extensive availability of this kind of data structures in socioeconomic databases.

Suggested Citation

  • Juan M.C. Larrosa, 2005. "Compositional Time Series: Past and Present," Econometrics 0510002, EconWPA.
  • Handle: RePEc:wpa:wuwpem:0510002
    Note: Type of Document - pdf; pages: 9
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0510/0510002.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    2. Dale, Poirier J & Tobias, Justin, 2006. "Bayesian Econometrics," Staff General Research Papers Archive 12428, Iowa State University, Department of Economics.
    3. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    compositional data analysis; time series;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0510002. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: http://econwpa.repec.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.