IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0402009.html
   My bibliography  Save this paper

Classifying the Markets Volatility with ARMA Distance Measures

Author

Listed:
  • Edoardo Otranto

    (DEIR, Sassari)

Abstract

The financial time series are often characterized by similar volatility structures. The selection of series having a similar behavior could be important for the analysis of the transmission mechanisms of volatility and to forecast the time series, using the series with more similar structure. In this paper a metrics is developed in order to measure the distance between two GARCH models, extending well known results developed for the ARMA models. The statistic used to calculate it follows known distributions, so that it can be adopted as a test procedure. These tools can be used to develope an agglomerative algorithm in order to detect clusters of homogeneous series.

Suggested Citation

  • Edoardo Otranto, 2004. "Classifying the Markets Volatility with ARMA Distance Measures," Econometrics 0402009, EconWPA, revised 05 Mar 2004.
  • Handle: RePEc:wpa:wuwpem:0402009
    Note: Type of Document - pdf; prepared on WinXP; to print on Laser witer II NP; pages: 11; figures: 4 figures in the document. PDF document submitted via ftp
    as

    Download full text from publisher

    File URL: http://econwpa.repec.org/eps/em/papers/0402/0402009.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038 Elsevier.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    2. Otranto, Edoardo, 2008. "Clustering heteroskedastic time series by model-based procedures," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4685-4698, June.
    3. F. Lisi & E. Otranto, 2008. "Clustering Mutual Funds by Return and Risk Levels," Working Paper CRENoS 200813, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.

    More about this item

    Keywords

    GARCH models; clusters; agglomerative algorithm;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0402009. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: http://econwpa.repec.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.