IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpco/0209001.html
   My bibliography  Save this paper

The Santa Fe Artificial Stock Market Re-Examined - Suggested Corrections

Author

Listed:
  • Norman Ehrentreich

    (Martin-Luther University of Halle- Wittenberg)

Abstract

This paper rectifies a design problem in the Santa Fe Artificial Stock Market Model. Due to a faulty mutation operator, the resulting bit distribution in the classifier system was systematically upwardly biased, thus suggesting increased levels of technical trading for smaller GA-invocation intervals. The corrected version partly supports the Marimon-Sargent-Hypothesis that adaptive classifier agents in an artificial stock market will always discover the homogeneous rational expectation equilibrium. While agents always find the correct solution of non-bit usage, analyzing the time series data still suggests the existence of two different regimes depending on learning speed. Finally, classifier systems and neural networks as data mining techniques in artificial stock markets are discussed.

Suggested Citation

  • Norman Ehrentreich, 2002. "The Santa Fe Artificial Stock Market Re-Examined - Suggested Corrections," Computational Economics 0209001, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpco:0209001
    Note: Type of Document - Adobe-Pdf; prepared on LaTex on IBM PC (Windows); to print on Postscript; pages: 22; figures: included. submitted to the Journal of Economic Dynamics and Control
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/comp/papers/0209/0209001.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arthur, W.B. & Holland, J.H. & LeBaron, B. & Palmer, R. & Tayler, P., 1996. "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Working papers 9625, Wisconsin Madison - Social Systems.
    2. J. Doyne Farmer, 2000. "A Simple Model For The Nonequilibrium Dynamics And Evolution Of A Financial Market," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 425-441.
    3. Kiyotaki, Nobuhiro & Wright, Randall, 1989. "On Money as a Medium of Exchange," Journal of Political Economy, University of Chicago Press, vol. 97(4), pages 927-954, August.
    4. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    5. Brock, W.A. & Dechert, W.D. & LeBaron, B. & Scheinkman, J.A., 1995. "A Test for Independence Based on the Correlation Dimension," Working papers 9520, Wisconsin Madison - Social Systems.
    6. Marimon, Ramon & McGrattan, Ellen & Sargent, Thomas J., 1990. "Money as a medium of exchange in an economy with artificially intelligent agents," Journal of Economic Dynamics and Control, Elsevier, vol. 14(2), pages 329-373, May.
    7. W. Brian Arthur & Paul Tayler, "undated". "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Computing in Economics and Finance 1997 57, Society for Computational Economics.
    8. Chen, Shu-Heng & Lux, Thomas & Marchesi, Michele, 2001. "Testing for non-linear structure in an artificial financial market," Journal of Economic Behavior & Organization, Elsevier, vol. 46(3), pages 327-342, November.
    9. Joshi, Shareen & Parker, Jeffrey & Bedau, Mark A, 2002. "Financial Markets Can Be at Sub-optimal Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 19(1), pages 5-23, February.
    10. LeBaron, Blake & Arthur, W. Brian & Palmer, Richard, 1999. "Time series properties of an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1487-1516, September.
    11. Shareen Joshi & Jeffrey Parker & Mark A. Bedau, 1998. "Technical Trading Creates a Prisoner's Dilemma: Results from an Agent-Based Model," Research in Economics 98-12-115e, Santa Fe Institute.
    12. Riechmann, Thomas, 2001. "Genetic algorithm learning and evolutionary games," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 1019-1037, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Germán Creamer, 2012. "Model calibration and automated trading agent for Euro futures," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 531-545, December.
    2. Haijun Yang & Harry Wang & Gui Sun & Li Wang, 2015. "A comparison of U.S and Chinese financial market microstructure: heterogeneous agent-based multi-asset artificial stock markets approach," Journal of Evolutionary Economics, Springer, vol. 25(5), pages 901-924, November.
    3. José Manuel Galán & Luis R. Izquierdo & Segismundo S. Izquierdo & José Ignacio Santos & Ricardo del Olmo & Adolfo López-Paredes & Bruce Edmonds, 2009. "Errors and Artefacts in Agent-Based Modelling," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-1.
    4. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehrentreich, Norman, 2006. "Technical trading in the Santa Fe Institute Artificial Stock Market revisited," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 599-616, December.
    2. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    3. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    4. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    5. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, December.
    6. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    7. Marco Raberto & Silvano Cincotti & Sergio Focardi & Michele Marchesi, 2003. "Traders' Long-Run Wealth in an Artificial Financial Market," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 255-272, October.
    8. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    9. Ryuichi YAMAMOTO, 2005. "Evolution with Individual and Social Learning in an Agent-Based Stock Market," Computing in Economics and Finance 2005 228, Society for Computational Economics.
    10. Andrea Gaunersdorfer & Cars Hommes, 2007. "A Nonlinear Structural Model for Volatility Clustering," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 265-288, Springer.
    11. Brock, W.A. & Hommes, C.H. & Wagener, F.O.O., 2001. "Evolutionary Dynamics in Financial Markets With Many Trader Types," CeNDEF Working Papers 01-01, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    12. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    13. Hommes, C.H., 2005. "Heterogeneous Agents Models: two simple examples, forthcoming In: Lines, M. (ed.) Nonlinear Dynamical Systems in Economics, CISM Courses and Lectures, Springer, 2005, pp.131-164," CeNDEF Working Papers 05-01, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    14. Baosheng Yuan & Kan Chen, 2006. "Impact of investor’s varying risk aversion on the dynamics of asset price fluctuations," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 1(2), pages 189-214, November.
    15. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    16. Gaunersdorfer, Andrea & Hommes, Cars H. & Wagener, Florian O.O., 2008. "Bifurcation routes to volatility clustering under evolutionary learning," Journal of Economic Behavior & Organization, Elsevier, vol. 67(1), pages 27-47, July.
    17. Hommes, C.H., 2001. "Modeling the stylized facts in finance through simple nonlinear adaptive systems," CeNDEF Working Papers 01-06, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    18. Hommes, C.H. & Huang, H. & Wang, D., 2002. "A Robust Rational Route to in a Simple Asset Pricing Model," CeNDEF Working Papers 02-08, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    19. He, Xue-Zhong & Li, Youwei, 2007. "Power-law behaviour, heterogeneity, and trend chasing," Journal of Economic Dynamics and Control, Elsevier, vol. 31(10), pages 3396-3426, October.
    20. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.

    More about this item

    Keywords

    Asset Pricing; Learning; Financial Time Series; Genetic Algorithms; Classifier Systems; Agent-Based Simulation;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpco:0209001. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.