IDEAS home Printed from https://ideas.repec.org/p/wii/spaper/statr9.html

Die Vernetzung Wiens mit den Städten Europas

Author

Listed:
  • David Zenz

    (The Vienna Institute for International Economic Studies, wiiw)

Abstract

Wir stellen ein Maß für die Beziehung zwischen zwei Städten/Regionen basierend auf Suchanfragen vor, ausgehend von Merkmalen der Suchanfragen-Zeitreihen nach Zerlegung der Zeitreihe mittels STL (Komponentenzerlegung mittels lokaler linearer Kernregression). Grundlage für das Maß sind einerseits die Eigenschaft 'Trendstärke', welches die Stärke des zugrundeliegenden Trends (egal ob steigend oder fallend) der Zeitreihe beschreibt, sowie das Feature 'linearity' der letzten fünf Jahre, welches uns die Richtung des Trends gibt. Die Kombination aus diesen Features der beiden Richtungen der Suchanfragen gibt uns ein Maß, welches für die Analyse der Entwicklung des vorgestellten Beziehungsmaßes über den Beobachtungszeitraum 2004-2020 in unterschiedlichen Suchkategorien zwischen zwei Städte/Regionen verwendet werden kann. Wir präsentieren Beispiele basierend auf Wien als point-of-interest im Kontext 'Wien und die Städte Europas', und schlagen ein Dashboard mit den verwendeten Indikatoren für Politik-Entscheidungen vor. Disclaimer Die Durchführung der Studie wurde durch finanzielle Unterstützung der Kulturabteilung der Stadt Wien (MA 7) ermöglicht. We introduce a measure of linkage for the relationship between cities/regions, based on time series features of search engine queries. The used features are backed by time series decomposition using STL, i.e. seasonal and trend decomposition using Loess, precisely the strength of the trend and the linearity of a time series. The combination of these two features for both sides of search interest, e.g. the search interest for a certain topic in the city of Berlin based on search queries posed in Vienna, allows for the analysis of the development of this computed measure of linkage for the period 2004-2020 in various search engine categories provided by Google Trends between cities/regions in Europe. We then present examples based on the city of Vienna as a point-of-interest for selected topics and propose a dashboard for policy decisions.

Suggested Citation

  • David Zenz, 2020. "Die Vernetzung Wiens mit den Städten Europas," wiiw Statistical Reports 9, The Vienna Institute for International Economic Studies, wiiw.
  • Handle: RePEc:wii:spaper:statr:9
    as

    Download full text from publisher

    File URL: https://wiiw.ac.at/die-vernetzung-wiens-mit-den-staedten-europas-dlp-5353.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna, Petrenko, . "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(01).
    2. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    3. Jun, Seung-Pyo & Yoo, Hyoung Sun & Choi, San, 2018. "Ten years of research change using Google Trends: From the perspective of big data utilizations and applications," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 69-87.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyoung Sun Yoo & Chul Lee & Seung-Pyo Jun, 2018. "The Characteristics of SMEs Preferring Cooperative Research and Development Support from the Government: The Case of Korea," Sustainability, MDPI, vol. 10(9), pages 1-18, August.
    2. Alex Coad & Dominik Janzing & Paul Nightingale, 2018. "Tools for causal inference from cross-sectional innovation surveys with continuous or discrete variables: Theory and applications," Revista Cuadernos de Economia, Universidad Nacional de Colombia, FCE, CID, vol. 37(75), pages 779-808.
    3. Emmanuel Sirimal Silva & Hossein Hassani & Dag Øivind Madsen & Liz Gee, 2019. "Googling Fashion: Forecasting Fashion Consumer Behaviour Using Google Trends," Social Sciences, MDPI, vol. 8(4), pages 1-23, April.
    4. Wang, Huamao & Yao, Yumei & Salhi, Said, 2020. "Tension in big data using machine learning: Analysis and applications," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    5. Vivian Welch & Christine M. Mathew & Panteha Babelmorad & Yanfei Li & Elizabeth T. Ghogomu & Johan Borg & Monserrat Conde & Elizabeth Kristjansson & Anne Lyddiatt & Sue Marcus & Jason W. Nickerson & K, 2021. "Health, social care and technological interventions to improve functional ability of older adults living at home: An evidence and gap map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    6. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    7. Persson, Petra & Qiu, Xinyao & Rossin-Slater, Maya, 2021. "Family Spillover Effects of Marginal Diagnoses: The Case of ADHD," IZA Discussion Papers 14020, Institute of Labor Economics (IZA).
    8. Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
    9. Sant'Anna, Ana Claudia & Bergtold, Jason & Shanoyan, Aleksan & Caldas, Marcellus & Granco, Gabriel, 2021. "Deal or No Deal? Analysis of Bioenergy Feedstock Contract Choice with Multiple Opt-out Options and Contract Attribute Substitutability," 2021 Conference, August 17-31, 2021, Virtual 315289, International Association of Agricultural Economists.
    10. Tommaso Colussi & Ingo E. Isphording & Nico Pestel, 2021. "Minority Salience and Political Extremism," American Economic Journal: Applied Economics, American Economic Association, vol. 13(3), pages 237-271, July.
    11. Erkmen Giray Aslim, 2019. "The Relationship Between Health Insurance and Early Retirement: Evidence from the Affordable Care Act," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 45(1), pages 112-140, January.
    12. Edna P. Conwi & Alexander G. Cortez & Normita Ramos, 2016. "Effects of the Dualized Training Program on the Occupational Interest of the Students Enrolled in Bachelor of Science in Hotel and Restaurant Management," Indian Journal of Commerce and Management Studies, Educational Research Multimedia & Publications,India, vol. 7(1), pages 31-36, January.
    13. Nihan Akyelken, 2017. "Mobility-Related Economic Exclusion: Accessibility and Commuting Patterns in Industrial Zones in Turkey," Social Inclusion, Cogitatio Press, vol. 5(4), pages 175-182.
    14. Youngna Choi, 2022. "Economic Stimulus and Financial Instability: Recent Case of the U.S. Household," JRFM, MDPI, vol. 15(6), pages 1-25, June.
    15. Peng, Qiao & McKillop, Donal & Quinn, Barry & Liu, Kailong, 2025. "Modeling and predicting failure in US credit unions," International Journal of Forecasting, Elsevier, vol. 41(3), pages 1237-1259.
    16. Camillia Kong & John Coggon & Michael Dunn & Penny Cooper, 2019. "Judging Values and Participation in Mental Capacity Law," Laws, MDPI, vol. 8(1), pages 1-22, February.
    17. Katsuyuki Tanaka & Takuo Higashide & Takuji Kinkyo & Shigeyuki Hamori, 2025. "A Multi-Stage Financial Distress Early Warning System: Analyzing Corporate Insolvency with Random Forest," JRFM, MDPI, vol. 18(4), pages 1-16, April.
    18. Dindo, Pietro & Massari, Filippo, 2020. "The wisdom of the crowd in dynamic economies," Theoretical Economics, Econometric Society, vol. 15(4), November.
    19. Benno Ferrarini & Julie Maupin & Marthe Hinojales, 2017. "Distributed Ledger Technologies for Developing Asia," ADB Economics Working Paper Series 533, Asian Development Bank.
    20. Andrzej Cieślik & Sarhad Hamza, 2022. "Inward FDI, IFRS Adoption and Institutional Quality: Insights from the MENA Countries," IJFS, MDPI, vol. 10(3), pages 1-19, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
    • M30 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - General
    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z10 - Other Special Topics - - Cultural Economics - - - General
    • Z30 - Other Special Topics - - Tourism Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wii:spaper:statr:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Customer service (email available below). General contact details of provider: https://edirc.repec.org/data/wiiwwat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.