IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/10350.html
   My bibliography  Save this paper

The Impact of Infrastructure on Development Outcomes: A Meta-Analysis

Author

Listed:
  • Foster,Vivien
  • Gorgulu,Nisan
  • Jain,Dhruv
  • Straub,Stéphane
  • Vagliasindi,Maria

Abstract

This paper presents a meta-analysis of the infrastructure research done over more than three decades, using a database of over a thousand estimates from 221 papers reporting outcome elasticities. The analysis casts a wide net to include the transport, energy, and digital or information and communication technology (ICT) sectors, and the whole set of outcomes covered in the literature, including output, employment and wages, inequality and poverty, trade, education and health, population, and environmental aspects. The results allow for an update of the underlying parameters of interest, the “true” underlying infrastructure elasticities, accounting for publication bias, as well as for heterogeneity stemming from both study design and context, with a particular focus on developing countries.

Suggested Citation

  • Foster,Vivien & Gorgulu,Nisan & Jain,Dhruv & Straub,Stéphane & Vagliasindi,Maria, 2023. "The Impact of Infrastructure on Development Outcomes: A Meta-Analysis," Policy Research Working Paper Series 10350, The World Bank.
  • Handle: RePEc:wbk:wbrwps:10350
    as

    Download full text from publisher

    File URL: http://documents.worldbank.org/curated/en/099510203092318515/pdf/IDU18a9d8af41f7d51487e1837218744c048b215.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    2. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    3. Isaiah Andrews & Maximilian Kasy, 2019. "Identification of and Correction for Publication Bias," American Economic Review, American Economic Association, vol. 109(8), pages 2766-2794, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    2. Everding, Jakob & Marcus, Jan, 2020. "The effect of unemployment on the smoking behavior of couples," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 29(2), pages 154-170.
    3. Bryan T. Kelly & Asaf Manela & Alan Moreira, 2019. "Text Selection," NBER Working Papers 26517, National Bureau of Economic Research, Inc.
    4. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    5. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2019. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1339-1350, July.
    7. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    8. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    9. Brito, Igor R.S. & Oliveira, Alessandro V.M. & Dresner, Martin E., 2021. "An econometric study of the effects of airport privatization on airfares in Brazil," Transport Policy, Elsevier, vol. 114(C), pages 338-349.
    10. Santos, Luca J. & Oliveira, Alessandro V.M. & Aldrighi, Dante Mendes, 2021. "Testing the differentiated impact of the COVID-19 pandemic on air travel demand considering social inclusion," Journal of Air Transport Management, Elsevier, vol. 94(C).
    11. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    12. Jonathan Norris & Martijn van Hasselt, 2023. "Troubled in school: does maternal involvement matter for adolescents?," Journal of Population Economics, Springer;European Society for Population Economics, vol. 36(4), pages 2655-2689, October.
    13. Hamsa Bastani, 2021. "Predicting with Proxies: Transfer Learning in High Dimension," Management Science, INFORMS, vol. 67(5), pages 2964-2984, May.
    14. Neng-Chieh Chang, 2020. "The Mode Treatment Effect," Papers 2007.11606, arXiv.org.
    15. Franz Huber & Alan Ponce & Francesco Rentocchini & Thomas Wainwright, 2020. "The Wealth of (Open Data) Nations? Examining the interplay of open government data and country-level institutions for entrepreneurial activity at the country-level," SEEDS Working Papers 1120, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Nov 2020.
    16. Jelena Bradic & Victor Chernozhukov & Whitney K. Newey & Yinchu Zhu, 2019. "Minimax Semiparametric Learning With Approximate Sparsity," Papers 1912.12213, arXiv.org, revised Aug 2022.
    17. Damian Kozbur, 2020. "Analysis of Testing‐Based Forward Model Selection," Econometrica, Econometric Society, vol. 88(5), pages 2147-2173, September.
    18. Damian Kozbur, 2017. "Testing-Based Forward Model Selection," American Economic Review, American Economic Association, vol. 107(5), pages 266-269, May.
    19. Luv Sharma & Aravind Chandrasekaran & Elliot Bendoly, 2020. "Does the Office of Patient Experience Matter in Improving Delivery of Care?," Production and Operations Management, Production and Operations Management Society, vol. 29(4), pages 833-855, April.
    20. Timothy B. Armstrong & Michal Kolesár & Soonwoo Kwon, 2020. "Bias-Aware Inference in Regularized Regression Models," Working Papers 2020-2, Princeton University. Economics Department..

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:10350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.