IDEAS home Printed from https://ideas.repec.org/p/war/wpaper/2010-16.html
   My bibliography  Save this paper

Which Option Pricing Model is the Best? High Frequency Data for Nikkei225 Index Options

Author

Listed:
  • Ryszard Kokoszczyński

    (Faculty of Economic Sciences, University of Warsaw, Economic Institute, National Bank of Poland)

  • Paweł Sakowski

    (Faculty of Economic Sciences, University of Warsaw)

  • Robert Ślepaczuk

    (Faculty of Economic Sciences, University of Warsaw)

Abstract

Option pricing models are the main subject of many research papers prepared both in academia and financial industry. Using high-frequency data for Nikkei225 index options, we check the properties of option pricing models with different assumptions concerning the volatility process (historical, realized, implied, stochastic or based on GARCH model). In order to relax the continuous dividend payout assumption, we use the Black model for pricing options on futures, instead of the Black-Scholes-Merton model. The results are presented separately for 5 classes of moneyness ratio and 5 classes of time to maturity in order to show some patterns in option pricing and to check the robustness of our results. The Black model with implied volatility (BIV) comes out as the best one. Highest average pricing errors we obtain for the Black model with realized volatility (BRV). As a result, we do not see any additional gain from using more complex and time-consuming models (SV and GARCH models. Additionally, we describe liquidity of the Nikkei225 option pricing market and try to compare our results with a detailed study for the emerging market of WIG20 index options (Kokoszczyński et al. 2010b).

Suggested Citation

  • Ryszard Kokoszczyński & Paweł Sakowski & Robert Ślepaczuk, 2010. "Which Option Pricing Model is the Best? High Frequency Data for Nikkei225 Index Options," Working Papers 2010-16, Faculty of Economic Sciences, University of Warsaw.
  • Handle: RePEc:war:wpaper:2010-16
    as

    Download full text from publisher

    File URL: http://www.wne.uw.edu.pl/inf/wyd/WP/WNE_WP39.pdf
    File Function: First version, 2010
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    2. V. L. Martin & G. M. Martin & G. C. Lim, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404.
    3. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monica Billio & Bertrand Maillet & Loriana Pelizzon, 2022. "A meta-measure of performance related to both investors and investments characteristics," Annals of Operations Research, Springer, vol. 313(2), pages 1405-1447, June.
    2. Ryszard Kokoszczyński & Paweł Sakowski & Robert Ślepaczuk, 2010. "Midquotes or Transactional Data? The Comparison of Black Model on HF Data," Working Papers 2010-15, Faculty of Economic Sciences, University of Warsaw.
    3. León, à ngel & Mencía, Javier & Sentana, Enrique, 2009. "Parametric Properties of Semi-Nonparametric Distributions, with Applications to Option Valuation," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 176-192.
    4. Ryszard Kokoszczyński & Paweł Sakowski & Robert Ślepaczuk, 2017. "Which Option Pricing Model Is the Best? HF Data for Nikkei 225 Index Options," Central European Economic Journal, Sciendo, vol. 4(51), pages 18-39, December.
    5. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
    6. Cortés, Lina M. & Mora-Valencia, Andrés & Perote, Javier, 2020. "Retrieving the implicit risk neutral density of WTI options with a semi-nonparametric approach," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    7. Lina M. Cortés & Javier Perote & Andrés Mora-Valencia, 2017. "Implicit probability distribution for WTI options: The Black Scholes vs. the semi-nonparametric approach," Documentos de Trabajo de Valor Público 15923, Universidad EAFIT.
    8. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    9. Axarloglou, Kostas & Visvikis, Ilias & Zarkos, Stefanos, 2013. "The time dimension and value of flexibility in resource allocation: The case of the maritime industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 52(C), pages 35-48.
    10. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    11. Narayan, Paresh Kumar & Liu, Ruipeng, 2018. "A new GARCH model with higher moments for stock return predictability," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 93-103.
    12. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    13. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.
    14. F. Cavalli & A. Naimzada & N. Pecora & M. Pireddu, 2021. "Market sentiment and heterogeneous agents in an evolutive financial model," Journal of Evolutionary Economics, Springer, vol. 31(4), pages 1189-1219, September.
    15. Falko Baustian & Katev{r}ina Filipov'a & Jan Posp'iv{s}il, 2019. "Solution of option pricing equations using orthogonal polynomial expansion," Papers 1912.06533, arXiv.org, revised Jun 2020.
    16. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Skewness and Kurtosis Implied by Option Prices: A Second Comment," FMG Discussion Papers dp419, Financial Markets Group.
    17. Rodney D. Boehme & Veljko Fotak & Anthony D. May, 2020. "Seasoned Equity Offerings and Stock Price Crash Risk," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 9(4), pages 131-146, October.
    18. Hosam Ki & Byungwook Choi & Kook‐Hyun Chang & Miyoung Lee, 2005. "Option pricing under extended normal distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(9), pages 845-871, September.
    19. Li, Minqiang, 2008. "Price Deviations of S&P 500 Index Options from the Black-Scholes Formula Follow a Simple Pattern," MPRA Paper 11530, University Library of Munich, Germany.
    20. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2020. "Integrated dynamic models for hedging international portfolio risks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 48-65.

    More about this item

    Keywords

    option pricing models; financial market volatility; high-frequency financial data; midquotes data; transactional data; realized volatility; implied volatility; stochastic volatility; microstructure bias; emerging markets;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:war:wpaper:2010-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marcin Bąba (email available below). General contact details of provider: https://edirc.repec.org/data/fesuwpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.