IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/246.html
   My bibliography  Save this paper

On Explicit Probability Laws for Classes of Scalar Diffusions

Author

Listed:

Abstract

This paper uses Lie symmetry group methods to obtain transition probability densities for scalar diffusions, where the diffusion coefficient is given by a power law. We will show that if the drift of the diffusion satisfies a certain family of Riccati equations, then it is possible to compute a generalized Laplace transform of the transition density for the process. Various explicit examples are provided. We also obtain fundamental solutions of the Kolmogorov forward equation for diffusions, which do not correspond to transition probability densities.

Suggested Citation

  • Mark Craddock & Eckhard Platen, 2009. "On Explicit Probability Laws for Classes of Scalar Diffusions," Research Paper Series 246, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:246
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-02/QFR-rp246.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Craddock & Eckhard Platen, 2003. "Symmetry Group Methods for Fundamental Solutions and Characteristic Functions," Research Paper Series 90, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Eckhard Platen, 2006. "A Benchmark Approach To Finance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 131-151, January.
    3. Hardy Hulley & Eckhard Platen, 2007. "Laplace Transform Identities for Diffusions, with Applications to Rebates and Barrier Options," Research Paper Series 203, Quantitative Finance Research Centre, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Craddock, 2017. "Integral Transform and Lie Symmetry Methods for Scalar and Multi-Dimensional Diffusions," Research Paper Series 380, Quantitative Finance Research Centre, University of Technology, Sydney.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martino Grasselli, 2017. "The 4/2 Stochastic Volatility Model: A Unified Approach For The Heston And The 3/2 Model," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 1013-1034, October.
    2. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    3. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2009, January-A.
    4. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen & Erik Schlögl, 2009. "Alternative Defaultable Term Structure Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 1-31, March.
    5. Wong, Bernard, 2009. "Explicit construction of stochastic exponentials with arbitrary expectation k[set membership, variant](0,1)," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 880-883, April.
    6. Carole Bernard & Franck Moraux & Ludger R�schendorf & Steven Vanduffel, 2015. "Optimal payoffs under state-dependent preferences," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1157-1173, July.
    7. Kevin Fergusson & Eckhard Platen, 2006. "On the Distributional Characterization of Daily Log-Returns of a World Stock Index," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 19-38.
    8. Vladimir Cherny & Jan Obłój, 2013. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Finance and Stochastics, Springer, vol. 17(4), pages 771-800, October.
    9. repec:uts:finphd:40 is not listed on IDEAS
    10. Cui, Zhenyu & Nguyen, Duy, 2016. "Omega diffusion risk model with surplus-dependent tax and capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 150-161.
    11. Constantinos Kardaras, 2009. "Num\'{e}raire-invariant preferences in financial modeling," Papers 0903.3736, arXiv.org, revised Nov 2010.
    12. Eckhard Platen & Renata Rendek, 2009. "Simulation of Diversified Portfolios in a Continuous Financial Market," Research Paper Series 264, Quantitative Finance Research Centre, University of Technology, Sydney.
    13. Mikhail Zhitlukhin, 2018. "Survival investment strategies in a continuous-time market model with competition," Papers 1811.12491, arXiv.org, revised Sep 2019.
    14. Eberlein, Ernst & Kabanov, Yuri & Schmidt, Thorsten, 2022. "Ruin probabilities for a Sparre Andersen model with investments," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 72-84.
    15. Christina Nikitopoulos-Sklibosios & Eckhard Platen, 2012. "Alternative Term Structure Models for Reviewing Expectations Puzzles," Research Paper Series 305, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Mark Davis & SEBastien Lleo, 2008. "Risk-sensitive benchmarked asset management," Quantitative Finance, Taylor & Francis Journals, vol. 8(4), pages 415-426.
    17. Mikhail Zhitlukhin, 2022. "A continuous-time asset market game with short-lived assets," Finance and Stochastics, Springer, vol. 26(3), pages 587-630, July.
    18. Claudio Fontana, 2015. "Weak And Strong No-Arbitrage Conditions For Continuous Financial Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-34.
    19. Okano Yusuke & Yamada Toshihiro, 2019. "A control variate method for weak approximation of SDEs via discretization of numerical error of asymptotic expansion," Monte Carlo Methods and Applications, De Gruyter, vol. 25(3), pages 239-252, September.
    20. Jan Baldeaux & Fung & Katja Ignatieva & Eckhard Platen, 2015. "A Hybrid Model for Pricing and Hedging of Long-dated Bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(4), pages 366-398, September.
    21. Mathias Barkhagen & Jörgen Blomvall & Eckhard Platen, 2016. "Recovering the real-world density and liquidity premia from option data," Quantitative Finance, Taylor & Francis Journals, vol. 16(7), pages 1147-1164, July.

    More about this item

    Keywords

    Lie symmetry groups; fundamental solutions; transition probability densities; Ito diffusions;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.