IDEAS home Printed from
   My bibliography  Save this paper

Laplace Transform Identities for Diffusions, with Applications to Rebates and Barrier Options



Using a simple integral identity, we derive general expressions for the Laplace transform of the transition density of the process, if killing or reflecting boundaries are specified. We also obtain a number of useful expressions for the Laplace transforms of some functions of first-passage times for the diffusion. These results are applied to the special case of squared Bessel processes with killing or reflecting boundaries. In particular, we demonstrate how the above-mentioned integral identity enables us to derive the transition density of a squared Bessel process killed at the origin, without the need to invert a Laplace transform. Finally, as an application, we consider the problem of pricing barrier options on an index described by the minimal market model.

Suggested Citation

  • Hardy Hulley & Eckhard Platen, 2007. "Laplace Transform Identities for Diffusions, with Applications to Rebates and Barrier Options," Research Paper Series 203, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:203

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. David Heath & Eckhard Platen, 2002. "Consistent pricing and hedging for a modified constant elasticity of variance model," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 459-467.
    2. Mark Craddock & David Heath & Eckhard Platen, 1999. "Numerical Inversion of Laplace Transforms: A Survey of Techniques with Applications to Derivative Pricing," Research Paper Series 27, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Dmitry Davydov & Vadim Linetsky, 2001. "Pricing and Hedging Path-Dependent Options Under the CEV Process," Management Science, INFORMS, vol. 47(7), pages 949-965, July.
    4. Joseph Abate & Ward Whitt, 1995. "Numerical Inversion of Laplace Transforms of Probability Distributions," INFORMS Journal on Computing, INFORMS, vol. 7(1), pages 36-43, February.
    5. Antoon Pelsser, 2000. "Pricing double barrier options using Laplace transforms," Finance and Stochastics, Springer, vol. 4(1), pages 95-104.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Cui, Zhenyu & Nguyen, Duy, 2016. "Omega diffusion risk model with surplus-dependent tax and capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 150-161.
    2. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19.
    3. Wong, Bernard, 2009. "Explicit construction of stochastic exponentials with arbitrary expectation k[set membership, variant](0,1)," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 880-883, April.
    4. Mark Craddock & Eckhard Platen, 2009. "On Explicit Probability Laws for Classes of Scalar Diffusions," Research Paper Series 246, Quantitative Finance Research Centre, University of Technology, Sydney.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:203. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.