IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v279y2019i1p79-92.html
   My bibliography  Save this article

Fitting procedure for the two-state Batch Markov modulated Poisson process

Author

Listed:
  • Yera, Yoel G.
  • Lillo, Rosa E.
  • Ramírez-Cobo, Pepa

Abstract

The Batch Markov Modulated Poisson Process (BMMPP) is a subclass of the versatile Batch Markovian Arrival Process (BMAP) which has been proposed for the modeling of dependent events occurring in batches (such as group arrivals, failures or risk events). This paper focuses on exploring the possibilities of the BMMPP for the modeling of real phenomena involving point processes with group arrivals. The first result in this sense is the characterization of the two-state BMMPP with maximum batch size equal to K, the BMMPP2(K), by a set of moments related to the inter-event time and batch size distributions. This characterization leads to a sequential fitting approach via a moments matching method. The performance of the novel fitting approach is illustrated on both simulated and a real teletraffic data set, and compared to that of the EM algorithm. In addition, as an extension of the inference approach, the queue length distributions at departures in the queueing system BMMPP/M/1 is also estimated.

Suggested Citation

  • Yera, Yoel G. & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2019. "Fitting procedure for the two-state Batch Markov modulated Poisson process," European Journal of Operational Research, Elsevier, vol. 279(1), pages 79-92.
  • Handle: RePEc:eee:ejores:v:279:y:2019:i:1:p:79-92
    DOI: 10.1016/j.ejor.2019.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719303388
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Fearnhead & Chris Sherlock, 2006. "An exact Gibbs sampler for the Markov‐modulated Poisson process," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(5), pages 767-784, November.
    2. Bodrog, L. & Heindl, A. & Horváth, G. & Telek, M., 2008. "A Markovian canonical form of second-order matrix-exponential processes," European Journal of Operational Research, Elsevier, vol. 190(2), pages 459-477, October.
    3. Peter Buchholz & Jan Kriege, 2017. "Fitting correlated arrival and service times and related queueing performance," Queueing Systems: Theory and Applications, Springer, vol. 85(3), pages 337-359, April.
    4. Rodríguez, Joanna & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2016. "Dependence patterns for modeling simultaneous events," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 19-30.
    5. Joseph Abate & Ward Whitt, 1995. "Numerical Inversion of Laplace Transforms of Probability Distributions," INFORMS Journal on Computing, INFORMS, vol. 7(1), pages 36-43, February.
    6. Allan T. Andersen & Bo Friis Nielsen, 2002. "On the use of second‐order descriptors to predict queueing behavior of MAPs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(4), pages 391-409, June.
    7. Casale, Giuliano & Sansottera, Andrea & Cremonesi, Paolo, 2016. "Compact Markov-modulated models for multiclass trace fitting," European Journal of Operational Research, Elsevier, vol. 255(3), pages 822-833.
    8. Arts, Joachim, 2017. "A multi-item approach to repairable stocking and expediting in a fluctuating demand environment," European Journal of Operational Research, Elsevier, vol. 256(1), pages 102-115.
    9. Joanna Rodríguez & Rosa E. Lillo & Pepa Ramírez-Cobo, 2016. "Nonidentifiability of the Two-State BMAP," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 81-106, March.
    10. K. Sikdar & S. K. Samanta, 2016. "Analysis of a finite buffer variable batch service queue with batch Markovian arrival process and server’s vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 553-583, September.
    11. Rodríguez, Joanna & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2015. "Failure modeling of an electrical N-component framework by the non-stationary Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 126-133.
    12. Liu, Baoliang & Cui, Lirong & Wen, Yanqing & Shen, Jingyuan, 2015. "A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 1-8.
    13. Qi-Ming He & Hanqin Zhang, 2008. "An Algorithm for Computing Minimal% Coxian Representations," INFORMS Journal on Computing, INFORMS, vol. 20(2), pages 179-190, May.
    14. Landon, Joshua & Özekici, Süleyman & Soyer, Refik, 2013. "A Markov modulated Poisson model for software reliability," European Journal of Operational Research, Elsevier, vol. 229(2), pages 404-410.
    15. Lothar Breuer, 2002. "An EM Algorithm for Batch Markovian Arrival Processes and its Comparison to a Simpler Estimation Procedure," Annals of Operations Research, Springer, vol. 112(1), pages 123-138, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramírez-Cobo, Pepa & Carrizosa, Emilio & Lillo, Rosa E., 2021. "Analysis of an aggregate loss model in a Markov renewal regime," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    2. Yera, Yoel G. & Lillo, Rosa E. & Nielsen, Bo F. & Ramírez-Cobo, Pepa & Ruggeri, Fabrizio, 2021. "A bivariate two-state Markov modulated Poisson process for failure modeling," Reliability Engineering and System Safety, Elsevier, vol. 208(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yera, Yoel G. & Lillo, Rosa E. & Nielsen, Bo F. & Ramírez-Cobo, Pepa & Ruggeri, Fabrizio, 2021. "A bivariate two-state Markov modulated Poisson process for failure modeling," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    2. Yera Mora, Yoel Gustavo & Lillo Rodríguez, Rosa Elvira & Ramírez-Cobo, Pepa, 2017. "Findings about the two-state BMMPP for modeling point processes in reliability and queueing systems," DES - Working Papers. Statistics and Econometrics. WS 24622, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Ramírez-Cobo, Pepa & Carrizosa, Emilio & Lillo, Rosa E., 2021. "Analysis of an aggregate loss model in a Markov renewal regime," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    4. Pepa Ramírez-Cobo & Rosa Lillo & Michael Wiper, 2014. "Identifiability of the MAP 2 /G/1 queueing system," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 274-289, April.
    5. Benjamin Avanzi & Greg Taylor & Bernard Wong & Alan Xian, 2020. "Modelling and understanding count processes through a Markov-modulated non-homogeneous Poisson process framework," Papers 2003.13888, arXiv.org, revised May 2020.
    6. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Xian, Alan, 2021. "Modelling and understanding count processes through a Markov-modulated non-homogeneous Poisson process framework," European Journal of Operational Research, Elsevier, vol. 290(1), pages 177-195.
    7. Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. David H Collins & Richard L Warr & Aparna V Huzurbazar, 2013. "An introduction to statistical flowgraph models for engineering systems," Journal of Risk and Reliability, , vol. 227(5), pages 461-470, October.
    9. C. E. Phelan & D. Marazzina & G. Germano, 2020. "Pricing methods for α-quantile and perpetual early exercise options based on Spitzer identities," Quantitative Finance, Taylor & Francis Journals, vol. 20(6), pages 899-918, June.
    10. Dirk Becherer & Todor Bilarev & Peter Frentrup, 2018. "Optimal liquidation under stochastic liquidity," Finance and Stochastics, Springer, vol. 22(1), pages 39-68, January.
    11. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    12. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2021. "Random variate generation for exponential and gamma tilted stable distributions," LSE Research Online Documents on Economics 108593, London School of Economics and Political Science, LSE Library.
    13. Pepa Ramírez-Cobo & Rosa E. Lillo, 2012. "New Results About Weakly Equivalent MAP 2 and MAP 3 Processes," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 421-444, September.
    14. Phelan, Carolyn E. & Marazzina, Daniele & Fusai, Gianluca & Germano, Guido, 2018. "Fluctuation identities with continuous monitoring and their application to the pricing of barrier options," European Journal of Operational Research, Elsevier, vol. 271(1), pages 210-223.
    15. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    16. Runhuan Feng & Pingping Jiang & Hans Volkmer, 2020. "Geometric Brownian motion with affine drift and its time-integral," Papers 2012.09661, arXiv.org.
    17. Peter Braunsteins & Sophie Hautphenne & Peter G. Taylor, 2016. "The roles of coupling and the deviation matrix in determining the value of capacity in M/M/1/C queues," Queueing Systems: Theory and Applications, Springer, vol. 83(1), pages 157-179, June.
    18. Gökçe Kahveciog̃lu & Barış Balcıog̃lu, 2016. "Coping with production time variability via dynamic lead-time quotation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 877-898, October.
    19. Zeynep Akşin & Baris Ata & Seyed Morteza Emadi & Che-Lin Su, 2017. "Impact of Delay Announcements in Call Centers: An Empirical Approach," Operations Research, INFORMS, vol. 65(1), pages 242-265, February.
    20. Feng, Runhuan & Jiang, Pingping & Volkmer, Hans, 2021. "Geometric Brownian motion with affine drift and its time-integral," Applied Mathematics and Computation, Elsevier, vol. 395(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:279:y:2019:i:1:p:79-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.