IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/235.html
   My bibliography  Save this paper

Exchange Options Under Jump-Diffusion Dynamics

Author

Abstract

Margrabe provides a pricing formula for an exchange option where the distributions of both stock prices are log-normal with correlated Wiener components. Merton has provided a formula for the price of a European call option on a single stock where the stock price process contains a continuous Poisson jump component, in addition to a continuous log-normally distributed component. We use Merton’s analysis to extend Margrabe’s results to the case of exchange options where both stock price processes also contain compound Poisson jump components. A Radon-Nikod´ym derivative process that induces the change of measure from the market measure to an equivalent martingale measure is introduced. The choice of parameters in the Radon-Nikod´ym derivative allows us to price the option under different financial-economic scenarios. We also consider American style exchange options and provide a probabilistic intepretation of the early exercise premium.

Suggested Citation

  • Gerald H. L. Cheang & Carl Chiarella, 2008. "Exchange Options Under Jump-Diffusion Dynamics," Research Paper Series 235, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:235
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-02/QFR-rp235.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    2. David B. Colwell & Robert J. Elliott, 1993. "Discontinuous Asset Prices And Non-Attainable Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 3(3), pages 295-308.
    3. Mark Broadie & Jérôme Detemple, 1997. "The Valuation of American Options on Multiple Assets," Mathematical Finance, Wiley Blackwell, vol. 7(3), pages 241-286.
    4. Chandrasekhar Reddy Gukhal, 2001. "Analytical Valuation of American Options on Jump-Diffusion Processes," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 97-115.
    5. S. D. Jacka, 1991. "Optimal Stopping and the American Put," Mathematical Finance, Wiley Blackwell, vol. 1(2), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivares Pablo & Villamor Enrique, 2017. "Valuing Exchange Options Under an Ornstein-Uhlenbeck Covariance Model," Papers 1711.10013, arXiv.org.
    2. Pablo Olivares & Matthew Cane, 2014. "Pricing Spread Options under Stochastic Correlation and Jump-Diffusion Models," Papers 1409.1175, arXiv.org.
    3. Fry-McKibbin, Renée & Martin, Vance L. & Tang, Chrismin, 2014. "Financial contagion and asset pricing," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 296-308.
    4. Caldana, Ruggero & Fusai, Gianluca, 2013. "A general closed-form spread option pricing formula," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4893-4906.

    More about this item

    Keywords

    American options; exchange options; compound Poisson processes; equivalent martingale measure;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:235. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford). General contact details of provider: http://edirc.repec.org/data/qfutsau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.