IDEAS home Printed from
   My bibliography  Save this paper

Empirical Evidence on Student-t Log-Returns of Diversified World Stock Indices



The aim of this paper is to document some empirical facts related to log-returns of diversified world stock indices when these are denominated in different currencies. Motivated by earlier results, we have obtained the estimated distribution of log-returns for a range of world stock indices over long observation periods. We expand previous studies by applying the maximum likelihood ratio test to the large class of generalized hyperbolic distributions, and investigate the log-returns of a variety of diversified world stock indices in different currency denominations. This identifies the Student-t distribution with about four degrees of freedom as the typical estimated log-return distribution of such indices. Owing to the observed high levels of significance, this result can be interpreted as a stylized empirical fact.

Suggested Citation

  • Eckhard Platen & Renata Rendek, 2007. "Empirical Evidence on Student-t Log-Returns of Diversified World Stock Indices," Research Paper Series 194, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:194

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    2. Damir Filipović & Eckhard Platen, 2009. "Consistent Market Extensions Under The Benchmark Approach," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 41-52.
    3. Truc Le & Eckhard Platen, 2006. "Approximating the Growth Optimal Portfolio with a Diversified World Stock Index," Research Paper Series 180, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    5. Eckhard Platen & Gerhard Stahl, 2003. "A Structure for General and Specific Market Risk," Computational Statistics, Springer, vol. 18(3), pages 355-373, September.
    6. Eckhard Platen, 2004. "Diversified Portfolios with Jumps in a Benchmark Framework," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(1), pages 1-22, March.
    7. Platen, Eckhard, 2000. "A minimal financial market model," SFB 373 Discussion Papers 2000,91, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    8. Eckhard Platen, 2003. "Modeling the Volatility and Expected Value of a Diversified World Index," Research Paper Series 103, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Leah Kelly & Eckhard Platen & Michael Sorensen, 2003. "Estimating for Discretely Observed Diffusions Using Transform Functions," Research Paper Series 96, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. Kevin Fergusson & Eckhard Platen, 2006. "On the Distributional Characterization of Daily Log-Returns of a World Stock Index," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 19-38.
    Full references (including those not matched with items on IDEAS)

    More about this item


    diversified world stock index; growth optimal portfolio; log-return distribution; Student-t distribution; generalized hyperbolic distribution; likelihood ratio test;

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:194. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.