IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Biased representation of homothetic preferences on homogeneous sets

In the homogeneous case of one-dimensional objects, we show that any preference relation that is positive and homothetic can be represented by a quantitative utility function and unique bias. This bias may favor or disfavor the preference for an object. In the first case, preferences are complete but not transitive and an object may be preferred even when its utility is lower. In the second case, preferences are asymmetric and transitive but not negatively transitive and it may not be sufficient for an object to have a greater utility for be preferred. In this manner, the bias reflects the extent to which preferences depart from the maximization of a utility function.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Whole Paper
Download Restriction: no

Paper provided by Department of Economics and Business, Universitat Pompeu Fabra in its series Economics Working Papers with number 794.

in new window

Date of creation: Nov 2004
Date of revision:
Handle: RePEc:upf:upfgen:794
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Sen, A., 1996. "Maximisation and the Act of Choice," Papers 270, Banca Italia - Servizio di Studi.
  2. Bertrand Lemaire & Marc Le Menestrel, 2004. "Homothetic interval orders," Economics Working Papers 793, Department of Economics and Business, Universitat Pompeu Fabra.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:794. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.