IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2012cf835.html
   My bibliography  Save this paper

Sharp Bounds in the Binary Roy Model

Author

Listed:
  • Marc Henry

    (Département de sciences économiques, Université de Montréal)

  • Ismael Mourifié

    (Département de sciences économiques, Université de Montréal)

Abstract

We derive the empirical content of an instrumental variables model of sectorial choice with binary outcomes. Assumptions on selection include the simple, extended and generalized Roy models. The derived bounds are nonparametric intersection bounds and are simple enough to lend themselves to existing inference methods. Identification implications of exclusion restrictions are also derived.

Suggested Citation

  • Marc Henry & Ismael Mourifié, 2012. "Sharp Bounds in the Binary Roy Model," CIRJE F-Series CIRJE-F-835, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2012cf835
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2012/2012cf835.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Flavio Cunha & James Heckman & Salvador Navarro, 2005. "Separating uncertainty from heterogeneity in life cycle earnings," Oxford Economic Papers, Oxford University Press, vol. 57(2), pages 191-261, April.
    2. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 487-535.
    3. repec:spo:wpmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4ao8ocg is not listed on IDEAS
    4. D’Haultfœuille, Xavier & Maurel, Arnaud, 2013. "Inference on an extended Roy model, with an application to schooling decisions in France," Journal of Econometrics, Elsevier, vol. 174(2), pages 95-106.
    5. Azeem M. Shaikh & Edward J. Vytlacil, 2011. "Partial Identification in Triangular Systems of Equations With Binary Dependent Variables," Econometrica, Econometric Society, vol. 79(3), pages 949-955, May.
    6. Heckman, James J & Honore, Bo E, 1990. "The Empirical Content of the Roy Model," Econometrica, Econometric Society, vol. 58(5), pages 1121-1149, September.
    7. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    8. Qi Li & Jeffrey S. Racine & Jeffrey M. Wooldridge, 2008. "Estimating Average Treatment Effects with Continuous and Discrete Covariates: The Case of Swan-Ganz Catheterization," American Economic Review, American Economic Association, vol. 98(2), pages 357-362, May.
    9. Bayer, Patrick & Khan, Shakeeb & Timmins, Christopher, 2011. "Nonparametric Identification and Estimation in a Roy Model With Common Nonpecuniary Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 201-215.
    10. Alfred Galichon & Marc Henry, 2011. "Set Identification in Models with Multiple Equilibria," Review of Economic Studies, Oxford University Press, vol. 78(4), pages 1264-1298.
    11. Heckman, James J, 1990. "Varieties of Selection Bias," American Economic Review, American Economic Association, vol. 80(2), pages 313-318, May.
    12. repec:spo:wpecon:info:hdl:2441/5rkqqmvrn4tl22s9mc4ao8ocg is not listed on IDEAS
    13. Chiburis, Richard C., 2010. "Semiparametric bounds on treatment effects," Journal of Econometrics, Elsevier, vol. 159(2), pages 267-275, December.
    14. repec:cwl:cwldpp:1840rr is not listed on IDEAS
    15. Andrew Chesher & Adam M. Rosen & Konrad Smolinski, 2013. "An instrumental variable model of multiple discrete choice," Quantitative Economics, Econometric Society, vol. 4(2), pages 157-196, July.
    16. Arie Beresteanu & Ilya Molchanov & Francesca Molinari, 2008. "Sharp identification regions in games," CeMMAP working papers CWP15/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Andrew Chesher, 2010. "Instrumental Variable Models for Discrete Outcomes," Econometrica, Econometric Society, vol. 78(2), pages 575-601, March.
    18. Aakvik, Arild & Heckman, James J. & Vytlacil, Edward J., 2005. "Estimating treatment effects for discrete outcomes when responses to treatment vary: an application to Norwegian vocational rehabilitation programs," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 15-51.
    19. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
    20. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    2. Vishal Kamat, 2017. "Identification with Latent Choice Sets: The Case of the Head Start Impact Study," Papers 1711.02048, arXiv.org.
    3. Sung Jae Jun & Yoonseok Lee & Youngki Shin, 2016. "Treatment Effects With Unobserved Heterogeneity: A Set Identification Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 302-311, April.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2012cf835. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office). General contact details of provider: http://edirc.repec.org/data/ritokjp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.