IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2002cf165.html
   My bibliography  Save this paper

Can the neuro fuzzy model predict stock indexes better than its rivals?

Author

Listed:
  • Chin-Shien Lin

    (Department of Finance, Providence University)

  • Haider Ali Khan

    (GSIS, University of Denver and CIRJE, Faculty of Economics, University of Tokyo)

  • Chi-Chung Huang

    (Graduate School of Business Administration, Providence University)

Abstract

This paper develops a model of a trading system by using neuro fuzzy framework in order to better predict the stock index. Thirty well-known stock indexes are analyzed with the help of the model developed here. The empirical results show strong evidence of nonlinearity in the stock index by using KD technical indexes. The trading point analysis and the sensitivity analysis of trading costs show the robustness and opportunity for making further profits through using the proposed nonlinear neuro fuzzy system. The scenario analysis also shows that the proposed neuro fuzzy system performs consistently over time.

Suggested Citation

  • Chin-Shien Lin & Haider Ali Khan & Chi-Chung Huang, 2002. "Can the neuro fuzzy model predict stock indexes better than its rivals?," CIRJE F-Series CIRJE-F-165, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2002cf165
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2002/2002cf165.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    2. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
    3. Bessembinder, Hendrik & Chan, Kalok, 1995. "The profitability of technical trading rules in the Asian stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 3(2-3), pages 257-284, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey SVESHNIKOV & Victor BOCHARNIKOV, 2009. "Eforecasting Financial Indexes With Model Of Composite Events Influence," Journal of Applied Economic Sciences, Spiru Haret University, Faculty of Financial Management and Accounting Craiova, vol. 4(3(9)_Fall).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2002cf165. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office). General contact details of provider: http://edirc.repec.org/data/ritokjp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.