IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/adf30f3d-a79b-4105-9736-c4b043fc7f76.html
   My bibliography  Save this paper

Solution Concepts for Games with General Coalitional Structure (Replaces CentER DP 2011-025)

Author

Listed:
  • Koshevoy, G.A.
  • Talman, A.J.J.

    (Tilburg University, Center For Economic Research)

Abstract

We introduce a theory on marginal values and their core stability for cooperative games with arbitrary coalition structure. The theory is based on the notion of nested sets and the complex of nested sets associated to an arbitrary set system and the M-extension of a game for this set. For a set system being a building set or partition system, the corresponding complex is a polyhedral complex, and the vertices of this complex correspond to maximal strictly nested sets. To each maximal strictly nested set is associated a rooted tree. Given characteristic function, to every maximal strictly nested set a marginal value is associated to a corresponding rooted tree as in [9]. We show that the same marginal value is obtained by using the M-extension for every permutation that is associated to the rooted tree. The GC-solution is defined as the average of the marginal values over all maximal strictly nested sets. The solution can be viewed as the gravity center of the image of the vertices of the polyhedral complex. The GC-solution differs from the Myerson-kind value defined in [2] for union stable structures. The HS-solution is defined as the average of marginal values over the subclass of so-called half-space nested sets. The NT-solution is another solution and is defined as the average of marginal values over the subclass of NT-nested sets. For graphical buildings the collection of NT-nested sets corresponds to the set of spanning normal trees on the underlying graph and the NT-solution coincides with the average tree solution. We also study core stability of the solutions and show that both the HS-solution and NT-solution belong to the core under half-space supermodularity, which is a weaker condition than convexity of the game. For an arbitrary set system we show that there exists a unique minimal building set containing the set system. As solutions we take the solutions for this building covering by extending in a natural way the characteristic function to it by using its Möbius inversion.

Suggested Citation

  • Koshevoy, G.A. & Talman, A.J.J., 2011. "Solution Concepts for Games with General Coalitional Structure (Replaces CentER DP 2011-025)," Discussion Paper 2011-119, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:adf30f3d-a79b-4105-9736-c4b043fc7f76
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/1362746/2011-119.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J. & Yang, Z., 2010. "The average tree solution for cooperative games with communication structure," Games and Economic Behavior, Elsevier, vol. 68(2), pages 626-633, March.
    2. Debasis Mishra & A. Talman, 2010. "A characterization of the average tree solution for tree games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 105-111, March.
    3. Derks, Jean J M & Gilles, Robert P, 1995. "Hierarchical Organization Structures and Constraints on Coalition Formation," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(2), pages 147-163.
    4. Gabrielle Demange, 2004. "On Group Stability in Hierarchies and Networks," Journal of Political Economy, University of Chicago Press, vol. 112(4), pages 754-778, August.
    5. Faigle, U. & Grabisch, M. & Heyne, M., 2010. "Monge extensions of cooperation and communication structures," European Journal of Operational Research, Elsevier, vol. 206(1), pages 104-110, October.
    6. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2001. "The Myerson value for union stable structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 54(3), pages 359-371, December.
    7. E. Algaba & J.M. Bilbao & J.J. López, 2001. "A unified approach to restricted games," Theory and Decision, Springer, vol. 50(4), pages 333-345, June.
    8. Faigle, U & Kern, W, 1992. "The Shapley Value for Cooperative Games under Precedence Constraints," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(3), pages 249-266.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huseynov, T. & Talman, A.J.J., 2012. "The Communication Tree Value for TU-games with Graph Communication," Discussion Paper 2012-095, Tilburg University, Center for Economic Research.
    2. Koshevoy, G.A. & Suzuki, T. & Talman, A.J.J., 2013. "Solutions For Games With General Coalitional Structure And Choice Sets," Discussion Paper 2013-012, Tilburg University, Center for Economic Research.
    3. Khmelnitskaya, A. & Selcuk, O. & Talman, A.J.J., 2012. "The Average Covering Tree Value for Directed Graph Games," Discussion Paper 2012-037, Tilburg University, Center for Economic Research.
    4. Pieter H.M. RUYS, 2014. "Architecture of an Economy with Social Enterprises: the Relational Capacity Approach," CIRIEC Working Papers 1413, CIRIEC - Université de Liège.
    5. Selcuk, O. & Talman, A.J.J., 2013. "Games With General Coalitional Structure," Discussion Paper 2013-002, Tilburg University, Center for Economic Research.

    More about this item

    Keywords

    Core; polytope; building set; nested set complex; Möbius inversion; permutations; normal fan; average tree solution; Myerson value;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:adf30f3d-a79b-4105-9736-c4b043fc7f76. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Richard Broekman). General contact details of provider: http://center.uvt.nl .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.