IDEAS home Printed from https://ideas.repec.org/p/syb/wpbsba/2123-20176.html
   My bibliography  Save this paper

Equivalence of optimal forecast combinations under affine constraints

Author

Listed:
  • Chan, Felix
  • Pauwels, Laurent

Abstract

Forecasts are usually produced from models and expert judgements. The reconciliation of different forecasts presents an interesting challenge for managerial decisions. Mean absolute deviations and mean squared errors scoring rules are commonly employed as the criteria of optimality to aggregate or combine multiple forecasts into a consensus forecast. While much is known about mean squared errors in the context of forecast combination, little attention has been given to the mean absolute deviation. This paper establishes the first-order condition and the optimal solutions from minimizing mean absolute deviation. With this result, the paper derives the conditions in which the optimal solutions for minimizing mean absolute deviation and mean squared error loss functions are equivalent. More generally, this paper derives a sufficient condition which ensures the equivalence of optimal solutions of minimizing different loss functions under the same affine constraint that each feasible solution must sum to one. A simulation study and an illustration using expert forecasts data corroborate the theoretical findings. Interestingly, the numerical analysis shows that even with skewness in the data, the equivalence is unaffected. However, when outliers are presented in the data, mean absolute deviation is more robust than the mean squared error in small samples, which is consistent with the conventional belief relating the two loss functions.

Suggested Citation

  • Chan, Felix & Pauwels, Laurent, 2019. "Equivalence of optimal forecast combinations under affine constraints," Working Papers BAWP-2019-02, University of Sydney Business School, Discipline of Business Analytics.
  • Handle: RePEc:syb:wpbsba:2123/20176
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/2123/20176
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chan, Felix & Pauwels, Laurent L., 2018. "Some theoretical results on forecast combinations," International Journal of Forecasting, Elsevier, vol. 34(1), pages 64-74.
    2. G. M. Fung & O. L. Mangasarian, 2011. "Equivalence of Minimal ℓ 0- and ℓ p -Norm Solutions of Linear Equalities, Inequalities and Linear Programs for Sufficiently Small p," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 1-10, October.
    3. S Wang & Q Meng & Z Liu, 2013. "On the weighting of the mean-absolute-deviation cost minimization model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(4), pages 622-628, April.
    4. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    5. Gastwirth, Joseph L, 1974. "Large Sample Theory of Some Measures of Income Inequality," Econometrica, Econometric Society, vol. 42(1), pages 191-196, January.
    6. Robert L. Winkler & Robert T. Clemen, 1992. "Sensitivity of Weights in Combining Forecasts," Operations Research, INFORMS, vol. 40(3), pages 609-614, June.
    7. Sunil Gupta & Peter C. Wilton, 1987. "Combination of Forecasts: An Extension," Management Science, INFORMS, vol. 33(3), pages 356-372, March.
    8. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    9. Matsypura, Dmytro & Thompson, Ryan & Vasnev, Andrey L., 2018. "Optimal selection of expert forecasts with integer programming," Omega, Elsevier, vol. 78(C), pages 165-175.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radchenko, Peter & Vasnev, Andrey L. & Wang, Wendun, 2023. "Too similar to combine? On negative weights in forecast combination," International Journal of Forecasting, Elsevier, vol. 39(1), pages 18-38.
    2. Chuanhua Wei & Chenping Du & Nana Zheng, 2020. "A Changing Weights Spatial Forecast Combination Approach with an Application to Housing Price Prediction," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 12(4), pages 1-11, April.
    3. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    4. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
    5. Kajal Lahiri & Huaming Peng & Xuguang Simon Sheng, 2022. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 29-50, Emerald Group Publishing Limited.
    6. Eraslan, Sercan & Nöller, Marvin, 2020. "Recession probabilities falling from the STARs," Discussion Papers 08/2020, Deutsche Bundesbank.
    7. Ji Wu & Xian Cheng & Stephen Shaoyi Liao, 2020. "Tourism forecast combination using the stochastic frontier analysis technique," Tourism Economics, , vol. 26(7), pages 1086-1107, November.
    8. Pauwels, Laurent & Radchenko, Peter & Vasnev, Andrey, 2019. "Higher Moment Constraints for Predictive Density Combinations," Working Papers BAWP-2019-01, University of Sydney Business School, Discipline of Business Analytics.
    9. Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip & Etienne, Xiaoli, 2012. "Composite and Outlook Forecast Accuracy," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(2), pages 1-19, August.
    10. Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.
    11. Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
    12. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    13. Magnus, Jan R. & Vasnev, Andrey L., 2015. "Interpretation and use of sensitivity in econometrics, illustrated with forecast combinations," International Journal of Forecasting, Elsevier, vol. 31(3), pages 769-781.
    14. Zongwu Cai & Chaoqun Ma & Xianhua Mi, 2020. "Realized Volatility Forecasting Based on Dynamic Quantile Model Averaging," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202016, University of Kansas, Department of Economics, revised Sep 2020.
    15. Zhentao Shi & Liangjun Su & Tian Xie, 2020. "L2-Relaxation: With Applications to Forecast Combination and Portfolio Analysis," Papers 2010.09477, arXiv.org, revised Aug 2022.
    16. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
    17. Wang, Ju-Jie & Wang, Jian-Zhou & Zhang, Zhe-George & Guo, Shu-Po, 2012. "Stock index forecasting based on a hybrid model," Omega, Elsevier, vol. 40(6), pages 758-766.
    18. Björn Fastrich & Peter Winker, 2014. "Combining Forecasts with Missing Data: Making Use of Portfolio Theory," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 127-152, August.
    19. Blanc, Sebastian M. & Setzer, Thomas, 2016. "When to choose the simple average in forecast combination," Journal of Business Research, Elsevier, vol. 69(10), pages 3951-3962.
    20. Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.

    More about this item

    Keywords

    Forecast combination; forecast accuracy; mean absolute deviation; optimal weights;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:syb:wpbsba:2123/20176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Artem Prokhorov (email available below). General contact details of provider: https://edirc.repec.org/data/sbsydau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.