IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Simulation-based Estimation Methods for Financial Time Series Models

  • Jun Yu

    ()

    (School of Economics, Singapore Management University)

Registered author(s):

This chapter overviews some recent advances on simulation-based methods of estimating financial time series models that are widely used in financial economics. The simulation-based methods have proven to be particularly useful when the likelihood function and moments do not have tractable forms, and hence, the maximum likelihood (ML) method and the generalized method of moments (GMM) are diffcult to use. They are also capable of improving the finite sample performance of the traditional methods. Both frequentist's and Bayesian simulation-based methods are reviewed. Frequentist's simulation-based methods cover various forms of simulated maximum likelihood (SML) methods, the simulated generalized method of moments (SGMM), the efficient method of moments (EMM), and the indirect inference (II) method. Bayesian simulation-based methods cover various MCMC algorithms. Each simulation-based method is discussed in the context of a specific financial time series model as a motivating example. Empirical applications, based on real exchange rates, interest rates and equity data, illustrate how the simulation-based methods are implemented. In particular, SML is applied to a discrete time stochastic volatility model, EMM to estimate a continuous time stochastic volatility model, MCMC to a credit risk model, the II method to a term structure model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://mercury.smu.edu.sg/rsrchpubupload/17837/handbook04.pdf
Download Restriction: no

Paper provided by Singapore Management University, School of Economics in its series Working Papers with number 19-2010.

as
in new window

Length: 37 pages
Date of creation: Oct 2010
Date of revision:
Publication status: Published in SMU Economics and Statistics Working Paper Series
Handle: RePEc:siu:wpaper:19-2010
Contact details of provider: Postal: 90 Stamford Road, Singapore 178903
Phone: 65-6828 0832
Fax: 65-6828 0833
Web page: http://www.economics.smu.edu.sg/

More information through EDIRC

Order Information: Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
  2. Ai[dieresis]t-Sahalia, Yacine & Yu, Jialin, 2006. "Saddlepoint approximations for continuous-time Markov processes," Journal of Econometrics, Elsevier, vol. 134(2), pages 507-551, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:siu:wpaper:19-2010. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (QL THor)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.