IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/47465.html
   My bibliography  Save this paper

Closed-Form Approximation of Timer Option Prices under General Stochastic Volatility Models

Author

Listed:
  • Li, Minqiang
  • Mercurio, Fabio

Abstract

We develop an asymptotic expansion technique for pricing timer options under general stochastic volatility models around small volatility of variance. Closed-form approximation formulas have been obtained for the Heston model and the 3/2-model. The approximation has an easy-to-understand Black-Scholes-like form and many other attractive properties. Numerical analysis shows that the approximation formulas are very fast and accurate.

Suggested Citation

  • Li, Minqiang & Mercurio, Fabio, 2013. "Closed-Form Approximation of Timer Option Prices under General Stochastic Volatility Models," MPRA Paper 47465, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:47465
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/47465/1/MPRA_paper_47465.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Li, Minqiang, 2008. "Closed-Form Approximations for Spread Option Prices and Greeks," MPRA Paper 6994, University Library of Munich, Germany.
    2. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    3. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    4. Peter Carr & Roger Lee, 2010. "Hedging variance options on continuous semimartingales," Finance and Stochastics, Springer, vol. 14(2), pages 179-207, April.
    5. Minqiang Li & Jieyun Zhou & Shi-Jie Deng, 2010. "Multi-asset spread option pricing and hedging," Quantitative Finance, Taylor & Francis Journals, vol. 10(3), pages 305-324.
    6. Ling Zhi Liang & Damiaan Lemmens & Jacques Tempere, 2011. "Path integral approach to the pricing of timer options with the Duru-Kleinert time transformation," Papers 1101.3713, arXiv.org.
    7. Avi Bick, 1995. "Quadratic-Variation-Based Dynamic Strategies," Management Science, INFORMS, vol. 41(4), pages 722-732, April.
    8. Ahn, Dong-Hyun & Gao, Bin, 1999. "A Parametric Nonlinear Model of Term Structure Dynamics," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 721-762.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Jingtang & Deng, Dongya & Lai, Yongzeng, 2015. "Explicit approximate analytic formulas for timer option pricing with stochastic interest rates," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 1-21.

    More about this item

    Keywords

    Timer Option; Closed-Form Approximation; Perturbation;

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:47465. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.