IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/47465.html
   My bibliography  Save this paper

Closed-Form Approximation of Timer Option Prices under General Stochastic Volatility Models

Author

Listed:
  • Li, Minqiang
  • Mercurio, Fabio

Abstract

We develop an asymptotic expansion technique for pricing timer options under general stochastic volatility models around small volatility of variance. Closed-form approximation formulas have been obtained for the Heston model and the 3/2-model. The approximation has an easy-to-understand Black-Scholes-like form and many other attractive properties. Numerical analysis shows that the approximation formulas are very fast and accurate.

Suggested Citation

  • Li, Minqiang & Mercurio, Fabio, 2013. "Closed-Form Approximation of Timer Option Prices under General Stochastic Volatility Models," MPRA Paper 47465, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:47465
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/47465/1/MPRA_paper_47465.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Minqiang, 2008. "Closed-Form Approximations for Spread Option Prices and Greeks," MPRA Paper 6994, University Library of Munich, Germany.
    2. Peter Carr & Roger Lee, 2010. "Hedging variance options on continuous semimartingales," Finance and Stochastics, Springer, vol. 14(2), pages 179-207, April.
    3. Minqiang Li & Jieyun Zhou & Shi-Jie Deng, 2010. "Multi-asset spread option pricing and hedging," Quantitative Finance, Taylor & Francis Journals, vol. 10(3), pages 305-324.
    4. Alexander Lipton, 2001. "Mathematical Methods for Foreign Exchange:A Financial Engineer's Approach," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4694, February.
    5. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
    6. Yacine Aït-Sahalia, 2001. "Transition Densities For Interest Rate And Other Nonlinear Diffusions," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 1, pages 1-34, World Scientific Publishing Co. Pte. Ltd..
    7. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    8. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    9. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    10. Ling Zhi Liang & Damiaan Lemmens & Jacques Tempere, 2011. "Path integral approach to the pricing of timer options with the Duru-Kleinert time transformation," Papers 1101.3713, arXiv.org.
    11. Avi Bick, 1995. "Quadratic-Variation-Based Dynamic Strategies," Management Science, INFORMS, vol. 41(4), pages 722-732, April.
    12. Ahn, Dong-Hyun & Gao, Bin, 1999. "A Parametric Nonlinear Model of Term Structure Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 721-762.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Jingtang & Deng, Dongya & Lai, Yongzeng, 2015. "Explicit approximate analytic formulas for timer option pricing with stochastic interest rates," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 1-21.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minqiang Li & Fabio Mercurio, 2015. "Analytic Approximation of Finite‐Maturity Timer Option Prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(3), pages 245-273, March.
    2. Minqiang Li, 2015. "Derivatives Pricing on Integrated Diffusion Processes: A General Perturbation Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(6), pages 582-595, June.
    3. Ma, Jingtang & Deng, Dongya & Lai, Yongzeng, 2015. "Explicit approximate analytic formulas for timer option pricing with stochastic interest rates," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 1-21.
    4. Alexander Lipton, 2023. "Kelvin Waves, Klein-Kramers and Kolmogorov Equations, Path-Dependent Financial Instruments: Survey and New Results," Papers 2309.04547, arXiv.org.
    5. Wendong Zheng & Pingping Zeng, 2015. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Papers 1504.08136, arXiv.org.
    6. Wendong Zheng & Pingping Zeng, 2016. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 344-373, September.
    7. Baldeaux, Jan & Grasselli, Martino & Platen, Eckhard, 2015. "Pricing currency derivatives under the benchmark approach," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 34-48.
    8. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    9. Zhenyu Cui & J. Lars Kirkby & Guanghua Lian & Duy Nguyen, 2017. "Integral Representation Of Probability Density Of Stochastic Volatility Models And Timer Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    10. Xiu, Dacheng, 2014. "Hermite polynomial based expansion of European option prices," Journal of Econometrics, Elsevier, vol. 179(2), pages 158-177.
    11. Baldeaux, Jan & Ignatieva, Katja & Platen, Eckhard, 2018. "Detecting money market bubbles," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 369-379.
    12. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    13. Fazlollah Soleymani & Andrey Itkin, 2019. "Pricing foreign exchange options under stochastic volatility and interest rates using an RBF--FD method," Papers 1903.00937, arXiv.org.
    14. Corradi, Valentina & Swanson, Norman R., 2005. "Bootstrap specification tests for diffusion processes," Journal of Econometrics, Elsevier, vol. 124(1), pages 117-148, January.
    15. Andrey Itkin, 2023. "The ATM implied skew in the ADO-Heston model," Papers 2309.15044, arXiv.org.
    16. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    17. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    18. Emmanuel Coffie, 2022. "Numerical Method for Highly Non-linear Mean-reverting Asset Price Model with CEV-type Process," Papers 2205.00634, arXiv.org.
    19. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    20. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.

    More about this item

    Keywords

    Timer Option; Closed-Form Approximation; Perturbation;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:47465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.