IDEAS home Printed from https://ideas.repec.org/p/sce/scecf5/409.html
   My bibliography  Save this paper

High Frequency Multiplicative Component Garch

Author

Listed:
  • Magdalena E. Sokalska
  • Ananda Chanda

    (Finance New York University)

  • Robert F. Engle

Abstract

This paper proposes a new way of modeling and forecasting intraday returns. We decompose the volatility of high frequency asset returns into components that may be easily interpreted and estimated. The conditional variance is expressed as a product of daily, diurnal and stochastic intraday volatility components. This model is applied to a comprehensive sample consisting of 10-minute returns on more than 2500 US equities. We apply a number of different specifications. Apart from building a new model, we obtain several interesting forecasting results. In particular, it turns out that forecasts obtained from the pooled cross section of groups of companies seem to outperform the corresponding forecasts from company-by-company estimation.

Suggested Citation

  • Magdalena E. Sokalska & Ananda Chanda & Robert F. Engle, 2005. "High Frequency Multiplicative Component Garch," Computing in Economics and Finance 2005 409, Society for Computational Economics.
  • Handle: RePEc:sce:scecf5:409
    as

    Download full text from publisher

    File URL: http://repec.org/sce2005/up.8558.1107223754.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    2. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    3. Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
    4. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    5. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    6. Torben G. Andersen & Tim Bollerslev, 1996. "DM-Dollar Volatility: Intraday Activity Patterns, Macroeconomic Announcements, and Longer Run Dependencies," NBER Working Papers 5783, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Großmaß Lidan, 2014. "Liquidity and the Value at Risk," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 234(5), pages 572-602, October.
    2. Dötz, Niko & Fischer, Christoph, 2010. "What can EMU countries' sovereign bond spreads tell us about market perceptions of default probabilities during the recent financial crisis?," Discussion Paper Series 1: Economic Studies 2010,11, Deutsche Bundesbank.
    3. Pierre Giot & Joachim Grammig, 2006. "How large is liquidity risk in an automated auction market?," Empirical Economics, Springer, vol. 30(4), pages 867-887, January.
    4. Chen Xilong & Ghysels Eric & Wang Fangfang, 2011. "HYBRID GARCH Models and Intra-Daily Return Periodicity," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-28, February.
    5. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    6. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
    2. Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.
    3. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    4. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    5. repec:lan:wpaper:3324 is not listed on IDEAS
    6. Alain Hecq & Sébastien Laurent & Franz C. Palm, 2011. "Common Intraday Periodicity," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 10(2), pages 325-353, 2012 20 1.
    7. Fuertes, Ana-Maria & Izzeldin, Marwan & Kalotychou, Elena, 2009. "On forecasting daily stock volatility: The role of intraday information and market conditions," International Journal of Forecasting, Elsevier, vol. 25(2), pages 259-281.
    8. repec:lan:wpaper:592830 is not listed on IDEAS
    9. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    10. Wen Cheong Chin & Min Cherng Lee, 2018. "S&P500 volatility analysis using high-frequency multipower variation volatility proxies," Empirical Economics, Springer, vol. 54(3), pages 1297-1318, May.
    11. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    12. Aknouche, Abdelhakim & Almohaimeed, Bader & Dimitrakopoulos, Stefanos, 2020. "Periodic autoregressive conditional duration," MPRA Paper 101696, University Library of Munich, Germany, revised 08 Jul 2020.
    13. Abdelhakim Aknouche & Bader Almohaimeed & Stefanos Dimitrakopoulos, 2022. "Periodic autoregressive conditional duration," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 5-29, January.
    14. Zhang, Hanyu & Dufour, Alfonso, 2019. "Modeling intraday volatility of European bond markets: A data filtering application," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 131-146.
    15. Alizadeh, Amir H. & Huang, Chih-Yueh & Marsh, Ian W., 2021. "Modelling the volatility of TOCOM energy futures: A regime switching realised volatility approach," Energy Economics, Elsevier, vol. 93(C).
    16. repec:lan:wpaper:3046 is not listed on IDEAS
    17. Chao Zhang & Yihuang Zhang & Mihai Cucuringu & Zhongmin Qian, 2022. "Volatility forecasting with machine learning and intraday commonality," Papers 2202.08962, arXiv.org, revised Feb 2023.
    18. repec:ipg:wpaper:2014-053 is not listed on IDEAS
    19. Chen Xilong & Ghysels Eric & Wang Fangfang, 2011. "HYBRID GARCH Models and Intra-Daily Return Periodicity," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-28, February.
    20. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    21. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    22. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    23. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    24. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.

    More about this item

    Keywords

    ARCH; Intra-day Returns; Volatility;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.