IDEAS home Printed from https://ideas.repec.org/p/sad/ypaper/18.html
   My bibliography  Save this paper

Evaluating efficiency gains in the Linear Probability Model

Author

Listed:
  • Tomás Pacheco

    (Department of Economics, Universidad de San Andrés)

Abstract

This paper evaluates the efficiency gains of the Adaptive Least Squares (ALS) estimator proposed by Romano and Wolf (2017) in the context of Linear Probability Models (LPM), where heteroskedasticity is inherent to the model. Using empirical applications and Monte Carlo simulations, we compare ALS to OLS and Probit estimators under three strategies for handling predicted probabilities outside the (0, 1) interval: bounding, sigmoid transformation, and trimming. The results show that efficiency gains from ALS are not systematic and depend on the correction method, with the bounding approach yielding the most substantial improvements.

Suggested Citation

  • Tomás Pacheco, 2025. "Evaluating efficiency gains in the Linear Probability Model," Young Researchers Working Papers 18, Universidad de San Andres, Departamento de Economia, revised Sep 2025.
  • Handle: RePEc:sad:ypaper:18
    as

    Download full text from publisher

    File URL: https://webacademicos.udesa.edu.ar/pub/econ/ydoc18.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    2. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    3. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    4. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard H. Spady & Sami Stouli, 2018. "Simultaneous Mean-Variance Regression," Bristol Economics Discussion Papers 18/697, School of Economics, University of Bristol, UK.
    2. Romano, Joseph P. & Wolf, Michael, 2017. "Resurrecting weighted least squares," Journal of Econometrics, Elsevier, vol. 197(1), pages 1-19.
    3. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    4. R. R. Croes & Y. J. F. M. Krabbe-Alkemade & M. C. Mikkers, 2018. "Competition and quality indicators in the health care sector: empirical evidence from the Dutch hospital sector," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 19(1), pages 5-19, January.
    5. Wooldridge, Jeffrey M., 2023. "What is a standard error? (And how should we compute it?)," Journal of Econometrics, Elsevier, vol. 237(2).
    6. Shinsuke Asakawa, 2020. "Can Child Benefits Shape Parents' Attitudes toward Childrearing in Japan?: Effects of Child Benefit Policy Expansions," Discussion Papers in Economics and Business 19-04-Rev.2, Osaka University, Graduate School of Economics.
    7. Michal Kolesár, 2013. "Estimation in an Instrumental Variables Model With Treatment Effect Heterogeneity," Working Papers 2013-2, Princeton University. Economics Department..
    8. Katarzyna Jabłońska, 2018. "Dealing With Heteroskedasticity Within The Modeling Of The Quality Of Life Of Older People," Statistics in Transition New Series, Polish Statistical Association, vol. 19(3), pages 423-452, September.
    9. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    10. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Eduardo Correia & Rodrigo Calili & José Francisco Pessanha & Maria Fatima Almeida, 2023. "Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions," Energies, MDPI, vol. 16(6), pages 1-22, March.
    12. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    13. Pötscher, Benedikt M. & Preinerstorfer, David, 2025. "Valid Heteroskedasticity Robust Testing," Econometric Theory, Cambridge University Press, vol. 41(2), pages 249-301, April.
    14. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    15. Kwame Ohene Djan & Samuel Anokye Nyarko & Roy Mersland & Leif Atle Beisland & Linda Nakato, 2023. "Influence of international ownership on the performance of local social enterprises: Evidence from the global microfinance industry," Post-Print hal-05221043, HAL.
    16. Juhl, Ted & Sosa-Escudero, Walter, 2014. "Testing for heteroskedasticity in fixed effects models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 484-494.
    17. LE GALLO, Julie, 2000. "Econométrie spatiale 2 -Hétérogénéité spatiale," LATEC - Document de travail - Economie (1991-2003) 2001-01, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    18. Tymon Słoczyński & S. Derya Uysal & Jeffrey M. Wooldridge, 2025. "Abadie’s Kappa and Weighting Estimators of the Local Average Treatment Effect," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 43(1), pages 164-177, January.
    19. Ting Ye & Ashkan Ertefaie & James Flory & Sean Hennessy & Dylan S. Small, 2023. "Instrumented difference‐in‐differences," Biometrics, The International Biometric Society, vol. 79(2), pages 569-581, June.
    20. Evan, Tomáš & Holý, Vladimír, 2021. "Economic conditions for innovation: Private vs. public sector," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sad:ypaper:18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maria Amelia Gibbons The email address of this maintainer does not seem to be valid anymore. Please ask Maria Amelia Gibbons to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/desanar.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.