IDEAS home Printed from https://ideas.repec.org/p/lat/lateco/2001-01.html
   My bibliography  Save this paper

Econométrie spatiale 2 -Hétérogénéité spatiale

Author

Listed:
  • LE GALLO, Julie

    (LATEC - CNRS - Université de Bourgogne)

Abstract

Les méthodes de l'économétrie spatiale visent à traiter les deux grandes particularités des données spatiales : l'autocorrélation spatiale qui se réfère à l'absence d'indépendance entre observations géographiques et l'hétérogénéité spatiale qui est liée à la différenciation dans l'espace des variables et des comportements. Ces techniques ont connu de nombreux développements depuis une dizaine d'années et sont de plus en plus appliquées dans les études empiriques nécessitant l'utilisation de données géographiques. L'objectif de cet article est de présenter les diverses façons permettant de modéliser l'autocorrélation et l'hétérogénéité spatiales ainsi que les procédures d'estimation et d'inférence adaptées aux modèles incorporant ces deux effets. L'article est divisé en deux parties. La première partie (document de travail n° 2000-05) est consacrée au problème de l'autocorrélation spatiale alors que cette seconde partie (document de travail n° 2001-01) porte sur le problème de l'hétérogénéité spatiale. / Spatial econometric methods aim at taking into account the two special characteristics of spatial data: spatial autocorrelation, which is the lack of independence between geographical observations, and spatial heterogeneity, which is related to the differentiation of variables and behaviors in space. These techniques have been mostly developed the last ten years and are more often applied in empirical studies with geographical data. The aim of this article is to present the way spatial autocorrelation and spatial heterogeneity can be incorporated in regression relationships and to present the estimation and inference procedures adapted to the models incorporating these two effects. This article is divided in two parts. The first part deals with spatial autocorrelation (working paper n°2000-05) and this second part deals with spatial heterogeneity (working paper n°2001-01).

Suggested Citation

  • LE GALLO, Julie, 2000. "Econométrie spatiale 2 -Hétérogénéité spatiale," LATEC - Document de travail - Economie (1991-2003) 2001-01, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
  • Handle: RePEc:lat:lateco:2001-01
    as

    Download full text from publisher

    File URL: http://leg.u-bourgogne.fr/images/stories/pdf/doc_trav2001/e2001-01.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    2. Harvey, A C, 1976. "Estimating Regression Models with Multiplicative Heteroscedasticity," Econometrica, Econometric Society, vol. 44(3), pages 461-465, May.
    3. Griffith, Daniel A., 1992. "A spatially adjusted N-way ANOVA model," Regional Science and Urban Economics, Elsevier, vol. 22(3), pages 347-369, September.
    4. Anselin, Luc, 1990. "Some robust approaches to testing and estimation in spatial econometrics," Regional Science and Urban Economics, Elsevier, vol. 20(2), pages 141-163, September.
    5. DAVIDSON, Russel & MACKINNON, James G., 1985. "Heteroskedastcity-robust tests in regressions directions," LIDAM Reprints CORE 678, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    7. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    8. Emilio Casetti & Ayse Can, 1999. "The econometric estimation and testing of DARP models," Journal of Geographical Systems, Springer, vol. 1(2), pages 91-106, July.
    9. Brueckner, Jan K., 1986. "A switching regression analysis of urban population densities," Journal of Urban Economics, Elsevier, vol. 19(2), pages 174-189, March.
    10. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    11. Can, Ayse, 1992. "Specification and estimation of hedonic housing price models," Regional Science and Urban Economics, Elsevier, vol. 22(3), pages 453-474, September.
    12. LE GALLO, Julie, 2000. "Econométrie spatiale 1 -Autocorrélation spatiale," LATEC - Document de travail - Economie (1991-2003) 2000-05, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    13. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    14. Pierre Legendre & Neal Oden & Robert Sokal & Alain Vaudor & Junhyong Kim, 1990. "Approximate analysis of variance of spatially autocorrelated regional data," Journal of Classification, Springer;The Classification Society, vol. 7(1), pages 53-75, March.
    15. LE GALLO, Julie & ERTUR, Cem, 2000. "Exploratory spatial data analysis of the distribution of regional per capita GDP in Europe, 1980-1995," LATEC - Document de travail - Economie (1991-2003) 2000-09, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    16. A. Stewart Fotheringham & Martin Charlton & Chris Brunsdon, 1997. "Measuring Spatial Variations in Relationships with Geographically Weighted Regression," Advances in Spatial Science, in: Manfred M. Fischer & Arthur Getis (ed.), Recent Developments in Spatial Analysis, chapter 4, pages 60-82, Springer.
    17. Daniel P. McMillen & John F. McDonald, 1998. "Population Density in Suburban Chicago: A Bid-rent Approach," Urban Studies, Urban Studies Journal Limited, vol. 35(7), pages 1119-1130, June.
    18. McMillen, Daniel P., 1996. "One Hundred Fifty Years of Land Values in Chicago: A Nonparametric Approach," Journal of Urban Economics, Elsevier, vol. 40(1), pages 100-124, July.
    19. Des Rosiers, F. & Theriault, M., 1999. "House Prices and Spatial Dependence: Towards an Integrated Procedure to Model Neighborhood Dynamics," Papers 1999-2, Laval - Faculte des sciences de administration.
    20. Theriault, M. & Des Rosier, F. & Vandersmissen, M.H., 1999. "GIS-Based Simulation of Accessibility to Enhance Hedonic Modeling and Property Value Appraisal: An Application to Quebec City Metropolitan Area," Papers 99-011, Laval - Faculte des sciences de administration.
    21. Koenker, Roger, 1981. "A note on studentizing a test for heteroscedasticity," Journal of Econometrics, Elsevier, vol. 17(1), pages 107-112, September.
    22. Larry D. Schroeder & David L. Sjoquist, 1976. "Investigation of Population Density Gradients Using Trend Surface Analysis," Land Economics, University of Wisconsin Press, vol. 52(3), pages 382-392.
    23. Cleveland, William S. & Devlin, Susan J. & Grosse, Eric, 1988. "Regression by local fitting : Methods, properties, and computational algorithms," Journal of Econometrics, Elsevier, vol. 37(1), pages 87-114, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Letort, Élodie & Temesgen, Chalachew, 2014. "Influence of environmental policies on farmland prices in the Bretagne region of France," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 95(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julie Le Gallo, 2000. "Spatial econometrics (2, Spatial heterogeneity) [Econométrie spatiale (2, Hétérogénéité spatiale)]," Working Papers hal-01526969, HAL.
    2. Julie Le Gallo, 2004. "Hétérogénéité spatiale : principes et méthodes," Économie et Prévision, Programme National Persée, vol. 162(1), pages 151-172.
    3. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    4. Romano, Joseph P. & Wolf, Michael, 2017. "Resurrecting weighted least squares," Journal of Econometrics, Elsevier, vol. 197(1), pages 1-19.
    5. Cem Ertur & Julie Le Gallo, 2008. "Regional Growth and Convergence: Heterogenous reaction versus interaction in spatial econometric approaches," Working Papers hal-00463274, HAL.
    6. Machado, Jose A. F. & Silva, J. M. C. Santos, 2000. "Glejser's test revisited," Journal of Econometrics, Elsevier, vol. 97(1), pages 189-202, July.
    7. Richard H. Spady & Sami Stouli, 2018. "Simultaneous Mean-Variance Regression," Bristol Economics Discussion Papers 18/697, School of Economics, University of Bristol, UK.
    8. Li, Zhaoyuan & Yao, Jianfeng, 2019. "Testing for heteroscedasticity in high-dimensional regressions," Econometrics and Statistics, Elsevier, vol. 9(C), pages 122-139.
    9. Catherine Baumont & Cem Ertur & Julie Le Gallo, 2001. "A spatial econometric analysis of geographic spillovers and growth for European regions, 1980-1995," Working Papers hal-01526858, HAL.
    10. Wooldridge, Jeffrey M., 1991. "On the application of robust, regression- based diagnostics to models of conditional means and conditional variances," Journal of Econometrics, Elsevier, vol. 47(1), pages 5-46, January.
    11. Chasco, Coro & Le Gallo, Julie & López, Fernando A., 2018. "A scan test for spatial groupwise heteroscedasticity in cross-sectional models with an application on houses prices in Madrid," Regional Science and Urban Economics, Elsevier, vol. 68(C), pages 226-238.
    12. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, December.
    13. Wooldridge, Jeffrey M., 1990. "A Unified Approach to Robust, Regression-Based Specification Tests," Econometric Theory, Cambridge University Press, vol. 6(1), pages 17-43, March.
    14. Dastoor, Naorayex K., 1997. "Testing for conditional heteroskedasticity with misspecified alternative hypotheses," Journal of Econometrics, Elsevier, vol. 82(1), pages 63-80.
    15. Clarke, George R. G., 1995. "More evidence on income distribution and growth," Journal of Development Economics, Elsevier, vol. 47(2), pages 403-427, August.
    16. MacKinnon, James G, 1992. "Model Specification Tests and Artificial Regressions," Journal of Economic Literature, American Economic Association, vol. 30(1), pages 102-146, March.
    17. Andres Felipe Hoyos Martin, 2015. "Uso de los estimadores HC en presencia de heterocedasticidad multiplicativa," Icesi Economics Working Papers 014564, Universidad Icesi.
    18. MacKinnon, J G, 1989. "Heteroskedasticity-Robust Tests for Structural Change," Empirical Economics, Springer, vol. 14(2), pages 77-92.
    19. Anjum, Zeba & Burke, Paul J. & Gerlagh, Reyer & Stern, David I., "undated". "Modeling the Emissions-Income Relationship Using Long-Run Growth Rates," Working Papers 249422, Australian National University, Centre for Climate Economics & Policy.
    20. Tsimpanos, Apostolos & Tsimbos, Cleon & Kalogirou, Stamatis, 2018. "Assessing spatial variation and heterogeneity of fertility in Greece at local authority level," MPRA Paper 100406, University Library of Munich, Germany.

    More about this item

    Keywords

    économétrie spatiale; autocorrélation spatiale; hétérogénéité spatiale ; spatial econometrics; spatial autocorrelation; spatial heterogeneity;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lat:lateco:2001-01. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/latecfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Odile Ferry The email address of this maintainer does not seem to be valid anymore. Please ask Odile Ferry to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/latecfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.