IDEAS home Printed from
   My bibliography  Save this paper

Econométrie spatiale 2 -Hétérogénéité spatiale


  • LE GALLO, Julie

    () (LATEC - CNRS - Université de Bourgogne)


Les méthodes de l'économétrie spatiale visent à traiter les deux grandes particularités des données spatiales : l'autocorrélation spatiale qui se réfère à l'absence d'indépendance entre observations géographiques et l'hétérogénéité spatiale qui est liée à la différenciation dans l'espace des variables et des comportements. Ces techniques ont connu de nombreux développements depuis une dizaine d'années et sont de plus en plus appliquées dans les études empiriques nécessitant l'utilisation de données géographiques. L'objectif de cet article est de présenter les diverses façons permettant de modéliser l'autocorrélation et l'hétérogénéité spatiales ainsi que les procédures d'estimation et d'inférence adaptées aux modèles incorporant ces deux effets. L'article est divisé en deux parties. La première partie (document de travail n° 2000-05) est consacrée au problème de l'autocorrélation spatiale alors que cette seconde partie (document de travail n° 2001-01) porte sur le problème de l'hétérogénéité spatiale. / Spatial econometric methods aim at taking into account the two special characteristics of spatial data: spatial autocorrelation, which is the lack of independence between geographical observations, and spatial heterogeneity, which is related to the differentiation of variables and behaviors in space. These techniques have been mostly developed the last ten years and are more often applied in empirical studies with geographical data. The aim of this article is to present the way spatial autocorrelation and spatial heterogeneity can be incorporated in regression relationships and to present the estimation and inference procedures adapted to the models incorporating these two effects. This article is divided in two parts. The first part deals with spatial autocorrelation (working paper n°2000-05) and this second part deals with spatial heterogeneity (working paper n°2001-01).

Suggested Citation

  • LE GALLO, Julie, 2000. "Econométrie spatiale 2 -Hétérogénéité spatiale," LATEC - Document de travail - Economie (1991-2003) 2001-01, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
  • Handle: RePEc:lat:lateco:2001-01

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    2. Harvey, A C, 1976. "Estimating Regression Models with Multiplicative Heteroscedasticity," Econometrica, Econometric Society, vol. 44(3), pages 461-465, May.
    3. Anselin, Luc, 1990. "Some robust approaches to testing and estimation in spatial econometrics," Regional Science and Urban Economics, Elsevier, vol. 20(2), pages 141-163, September.
    4. DAVIDSON, Russel & MACKINNON, James G., 1985. "Heteroskedastcity-robust tests in regressions directions," CORE Discussion Papers RP 678, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    6. Brueckner, Jan K., 1986. "A switching regression analysis of urban population densities," Journal of Urban Economics, Elsevier, vol. 19(2), pages 174-189, March.
    7. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    8. Can, Ayse, 1992. "Specification and estimation of hedonic housing price models," Regional Science and Urban Economics, Elsevier, vol. 22(3), pages 453-474, September.
    9. LE GALLO, Julie, 2000. "Econométrie spatiale 1 -Autocorrélation spatiale," LATEC - Document de travail - Economie (1991-2003) 2000-05, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    10. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    11. Pierre Legendre & Neal Oden & Robert Sokal & Alain Vaudor & Junhyong Kim, 1990. "Approximate analysis of variance of spatially autocorrelated regional data," Journal of Classification, Springer;The Classification Society, vol. 7(1), pages 53-75, March.
    12. LE GALLO, Julie & ERTUR, Cem, 2000. "Exploratory spatial data analysis of the distribution of regional per capita GDP in Europe, 1980-1995," LATEC - Document de travail - Economie (1991-2003) 2000-09, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    13. Daniel P. McMillen & John F. McDonald, 1998. "Population Density in Suburban Chicago: A Bid-rent Approach," Urban Studies, Urban Studies Journal Limited, vol. 35(7), pages 1119-1130, June.
    14. McMillen, Daniel P., 1996. "One Hundred Fifty Years of Land Values in Chicago: A Nonparametric Approach," Journal of Urban Economics, Elsevier, vol. 40(1), pages 100-124, July.
    15. Des Rosiers, F. & Theriault, M., 1999. "House Prices and Spatial Dependence: Towards an Integrated Procedure to Model Neighborhood Dynamics," Papers 1999-2, Laval - Faculte des sciences de administration.
    16. Theriault, M. & Des Rosier, F. & Vandersmissen, M.H., 1999. "GIS-Based Simulation of Accessibility to Enhance Hedonic Modeling and Property Value Appraisal: An Application to Quebec City Metropolitan Area," Papers 99-011, Laval - Faculte des sciences de administration.
    17. Koenker, Roger, 1981. "A note on studentizing a test for heteroscedasticity," Journal of Econometrics, Elsevier, vol. 17(1), pages 107-112, September.
    18. Yee Leung & Chang-Lin Mei & Wen-Xiu Zhang, 2000. "Statistical tests for spatial nonstationarity based on the geographically weighted regression model," Environment and Planning A, Pion Ltd, London, vol. 32(1), pages 9-32, January.
    19. Larry D. Schroeder & David L. Sjoquist, 1976. "Investigation of Population Density Gradients Using Trend Surface Analysis," Land Economics, University of Wisconsin Press, vol. 52(3), pages 382-392.
    20. Cleveland, William S. & Devlin, Susan J. & Grosse, Eric, 1988. "Regression by local fitting : Methods, properties, and computational algorithms," Journal of Econometrics, Elsevier, vol. 37(1), pages 87-114, January.
    Full references (including those not matched with items on IDEAS)

    More about this item


    économétrie spatiale; autocorrélation spatiale; hétérogénéité spatiale ; spatial econometrics; spatial autocorrelation; spatial heterogeneity;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lat:lateco:2001-01. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Odile Ferry). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.