IDEAS home Printed from https://ideas.repec.org/p/rug/rugwps/06-390.html
   My bibliography  Save this paper

Exploiting Randomness for Feature Selection in Multinomial Logit: a CRM Cross-Sell Application

Author

Listed:
  • A. PRINZIE

    ()

  • D. VAN DEN POEL

    ()

Abstract

Data mining applications addressing classification problems must master two key tasks: feature selection and model selection. This paper proposes a random feature selection procedure integrated within the multinomial logit (MNL) classifier to perform both tasks simultaneously. We assess the potential of the random feature selection procedure (exploiting randomness) as compared to an expert feature selection method (exploiting domain-knowledge) on a CRM cross-sell application. The results show great promise as the predictive accuracy of the integrated random feature selection in the MNL algorithm is substantially higher than that of the expert feature selection method.

Suggested Citation

  • A. Prinzie & D. Van Den Poel, 2006. "Exploiting Randomness for Feature Selection in Multinomial Logit: a CRM Cross-Sell Application," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/390, Ghent University, Faculty of Economics and Business Administration.
  • Handle: RePEc:rug:rugwps:06/390
    as

    Download full text from publisher

    File URL: http://wps-feb.ugent.be/Papers/wp_06_390.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Baltas, George & Doyle, Peter, 2001. "Random utility models in marketing research: a survey," Journal of Business Research, Elsevier, vol. 51(2), pages 115-125, February.
    2. Johnson, Michael D, 1984. " Consumer Choice Strategies for Comparing Noncomparable Alternatives," Journal of Consumer Research, Oxford University Press, vol. 11(3), pages 741-753, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rug:rugwps:06/390. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nathalie Verhaeghe). General contact details of provider: http://edirc.repec.org/data/ferugbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.