IDEAS home Printed from https://ideas.repec.org/p/rif/dpaper/1191.html
   My bibliography  Save this paper

Commercialising Eco-Efficient Nanotechnologies in the Construction Industy - The case of glass-processing in Finland

Author

Listed:
  • Palmberg, Christopher

Abstract

New and advanced process technologies are growing in importance for highly industrialized countries which increasingly have to compete with rapidly-developing, low-cost, countries. Nanotechnology is an interesting example in this context. It may evolve into a platform for industrial renewal in a broad range of sectors, and can also offer eco-efficient applications to address environmental concerns related to climate change. This paper assesses facilitating and inhibiting factors in the commercialisation and use of eco-efficient nanotechnology in the Finnish glass-processing and construction industry based on company case studies. The focus on the construction industry is motivated by its large contribution to economies while it also stands to gain significantly from new eco-efficient applications such as those enabled by nanotechnology. While there is an active community of nanotechnology-dedicated companies and research groups in this field, commercialization is inhibited by the absence of large and technologically progressive companies which could act as lead users, provide test markets, critical longer-term funding, and aid in the transition from R&D and piloting phases to industrial production. Public technology programs have provided a good basis for further developments and the construction industry could gain from nanotechnology once its benefits and value proposition to consumers and the general public become clearer.

Suggested Citation

  • Palmberg, Christopher, 2009. "Commercialising Eco-Efficient Nanotechnologies in the Construction Industy - The case of glass-processing in Finland," Discussion Papers 1191, The Research Institute of the Finnish Economy.
  • Handle: RePEc:rif:dpaper:1191
    as

    Download full text from publisher

    File URL: http://www.etla.fi/wp-content/uploads/2012/09/dp1191.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Palmberg, Christopher & Nikulainen, Tuomo, 2006. "Industrial Renewal and Growth through Nanotechnology ? - An Overview with Focus on Finland," Discussion Papers 1020, The Research Institute of the Finnish Economy.
    2. Carlsson, B & Stankiewicz, R, 1991. "On the Nature, Function and Composition of Technological Systems," Journal of Evolutionary Economics, Springer, vol. 1(2), pages 93-118, April.
    3. Frank T. Rothaermel & Charles W. L. Hill, 2005. "Technological Discontinuities and Complementary Assets: A Longitudinal Study of Industry and Firm Performance," Organization Science, INFORMS, vol. 16(1), pages 52-70, February.
    4. Maine, Elicia & Garnsey, Elizabeth, 2006. "Commercializing generic technology: The case of advanced materials ventures," Research Policy, Elsevier, vol. 35(3), pages 375-393, April.
    5. Luukkonen, Terttu, 2005. "Variability in organisational forms of biotechnology firms," Research Policy, Elsevier, vol. 34(4), pages 555-570, May.
    6. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    7. Palmberg, Christopher & Pajarinen, Mika & Nikulainen, Tuomo, 2007. "Transferring Science-based Technologies to Industry - Does Nanotechnology Make a Difference?," Discussion Papers 1064, The Research Institute of the Finnish Economy.
    8. Staffan Jacobsson & Anna Bergek, 2004. "Transforming the energy sector: the evolution of technological systems in renewable energy technology," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 13(5), pages 815-849, October.
    9. Frank T. Rothaermel, 2001. "Incumbent's advantage through exploiting complementary assets via interfirm cooperation," Strategic Management Journal, Wiley Blackwell, vol. 22(6‐7), pages 687-699, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Watkins, Andrew & Papaioannou, Theo & Mugwagwa, Julius & Kale, Dinar, 2015. "National innovation systems and the intermediary role of industry associations in building institutional capacities for innovation in developing countries: A critical review of the literature," Research Policy, Elsevier, vol. 44(8), pages 1407-1418.
    2. Jonas Heiberg & Bernhard Truffer, 2021. "The emergence of a global innovation system – a case study from the water sector," GEIST - Geography of Innovation and Sustainability Transitions 2021(09), GEIST Working Paper Series.
    3. Hellsmark, Hans & Frishammar, Johan & Söderholm, Patrik & Ylinenpää, Håkan, 2016. "The role of pilot and demonstration plants in technology development and innovation policy," Research Policy, Elsevier, vol. 45(9), pages 1743-1761.
    4. Markard, Jochen & Truffer, Bernhard, 2008. "Technological innovation systems and the multi-level perspective: Towards an integrated framework," Research Policy, Elsevier, vol. 37(4), pages 596-615, May.
    5. Zhigao Liu & Yimei Yin & Weidong Liu & Michael Dunford, 2015. "Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 135-158, April.
    6. del Río, Pablo & Peñasco, Cristina & Mir-Artigues, Pere, 2018. "An overview of drivers and barriers to concentrated solar power in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1019-1029.
    7. Lindholm-Dahlstrand, Asa & Andersson, Martin & Carlsson, Bo, 2016. "Entrepreneurial Experimentation: A key function in Entrepreneurial Systems of Innovation," Papers in Innovation Studies 2016/20, Lund University, CIRCLE - Centre for Innovation Research.
    8. Vroon, Tjebbe & Teunissen, Erik & Drent, Marlon & Negro, Simona O. & van Sark, Wilfried G.J.H.M., 2022. "Escaping the niche market: An innovation system analysis of the Dutch building integrated photovoltaics (BIPV) sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Jacobsson, Staffan & Karltorp, Kersti, 2013. "Mechanisms blocking the dynamics of the European offshore wind energy innovation system – Challenges for policy intervention," Energy Policy, Elsevier, vol. 63(C), pages 1182-1195.
    10. John Aldersey-Williams & Peter A. Strachan & Ian D. Broadbent, 2020. "Validating the “Seven Functions” Model of Technological Innovations Systems Theory with Industry Stakeholders—A Review from UK Offshore Renewables," Energies, MDPI, vol. 13(24), pages 1-21, December.
    11. del Río, Pablo & Bleda, Mercedes, 2012. "Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach," Energy Policy, Elsevier, vol. 50(C), pages 272-282.
    12. Binz, Christian & Truffer, Bernhard & Li, Li & Shi, Yajuan & Lu, Yonglong, 2012. "Conceptualizing leapfrogging with spatially coupled innovation systems: The case of onsite wastewater treatment in China," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 155-171.
    13. Andersson, Magnus & Ljunggren Söderman, Maria & Sandén, Björn A., 2019. "Challenges of recycling multiple scarce metals: The case of Swedish ELV and WEEE recycling," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    14. Coenen, Lars & Benneworth, Paul & Truffer, Bernhard, 2012. "Toward a spatial perspective on sustainability transitions," Research Policy, Elsevier, vol. 41(6), pages 968-979.
    15. Åsa Lindholm-Dahlstrand & Martin Andersson & Bo Carlsson, 2019. "Entrepreneurial experimentation: a key function in systems of innovation," Small Business Economics, Springer, vol. 53(3), pages 591-610, October.
    16. van Alphen, Klaas & van Ruijven, Jochem & Kasa, Sjur & Hekkert, Marko & Turkenburg, Wim, 2009. "The performance of the Norwegian carbon dioxide, capture and storage innovation system," Energy Policy, Elsevier, vol. 37(1), pages 43-55, January.
    17. Francisco Chicombo, Adélia Filosa & Musango, Josephine Kaviti, 2022. "Towards a theoretical framework for gendered energy transition at the urban household level: A case of Mozambique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Bauer, Fredric & Coenen, Lars & Hansen, Teis & McCormick, Kes & Palgan, Yuliya Voytenko, 2016. "Technological innovation systems for biorefineries – A review of the literature," Papers in Innovation Studies 2016/27, Lund University, CIRCLE - Centre for Innovation Research.
    19. Hellsmark, Hans & Jacobsson, Staffan, 2009. "Opportunities for and limits to Academics as System builders--The case of realizing the potential of gasified biomass in Austria," Energy Policy, Elsevier, vol. 37(12), pages 5597-5611, December.
    20. Oscar Svensson & Jamil Khan & Roger Hildingsson, 2020. "Studying Industrial Decarbonisation: Developing an Interdisciplinary Understanding of the Conditions for Transformation in Energy-Intensive Natural Resource-Based Industry," Sustainability, MDPI, vol. 12(5), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rif:dpaper:1191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kaija Hyvönen-Rajecki (email available below). General contact details of provider: https://edirc.repec.org/data/etlaafi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.