IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/201612.html
   My bibliography  Save this paper

The Role of Current Account Balance in Forecasting the US Equity Premium: Evidence from a Quantile Predictive Regression Approach

Author

Listed:
  • Rangan Gupta

    (Department of Economics, University of Pretoria)

  • Anandamayee Majumdar

    (Center for Advanced Statistics and Econometrics, Soochow University, China)

  • Mark Wohar

    (Department of Economics, University of Nebraska-Omaha, USA and Loughborough University, UK)

Abstract

The purpose of this paper is to investigate whether the current account balance can help in forecasting the quarterly S&P500-based equity premium out-of-sample. We consider an out-of-sample period of 1970:Q3 to 2014:Q4, with a corresponding in-sample period of 1947:Q2 to 1970:Q2. We employ a quantile predictive regression model. The quantile-based approach is more informative relative to any linear model, as it investigates the ability of the current account to forecast the entire conditional distribution of the equity premium, rather than being restricted just to the conditional-mean. In addition, we employ a recursive estimation of both the conditional-mean and quantile predictive regression models over the out-of-sample period which allows for time-varying parameters in the forecast evaluation part of the sample for both these models. Our results indicate that unlike as suggested by the linear (mean-based) predictive regression model, the quantile regression model shows that the (changes in the) real current account balance contains significant out-of-sample information especially when the stock market is performing poorly (below the quantile value of 0.3), but not when the market is in normal to bullish modes (quantile value above 0.3). This result seems to be intuitive in the sense that, when the markets are performing average to well, that is performing around the median and above of the conditional distribution of the equity premium, the excess returns is inherently a random-walk and hence, no information, from a predictor (changes in the real current account balance) is necessary.

Suggested Citation

  • Rangan Gupta & Anandamayee Majumdar & Mark Wohar, 2016. "The Role of Current Account Balance in Forecasting the US Equity Premium: Evidence from a Quantile Predictive Regression Approach," Working Papers 201612, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:201612
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Mehmet Balcilar & Rangan Gupta & Clement Kyei & Mark E. Wohar, 2016. "Does Economic Policy Uncertainty Predict Exchange Rate Returns and Volatility? Evidence from a Nonparametric Causality-in-Quantiles Test," Open Economies Review, Springer, vol. 27(2), pages 229-250, April.
    3. Benoît Mercereau, 2004. "The Role of Stock Markets in Current Account Dynamics: a Time-Series Approach," IMF Working Papers 2004/050, International Monetary Fund.
    4. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    5. Benoît Mercereau, 2003. "The Role of Stock Markets in Current Account Dynamics: Evidence from the United States," IMF Working Papers 2003/108, International Monetary Fund.
    6. Mercereau Benoit, 2003. "The Role of Stock Markets in Current Account Dynamics: a Time Series Approach," The B.E. Journal of Macroeconomics, De Gruyter, vol. 3(1), pages 1-30, April.
    7. John Y. Campbell, 2008. "Viewpoint: Estimating the equity premium," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 41(1), pages 1-21, February.
    8. Bekiros, Stelios & Gupta, Rangan & Kyei, Clement, 2016. "On economic uncertainty, stock market predictability and nonlinear spillover effects," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 184-191.
    9. Apostolos Serletis & Anastasios Malliaris & Melvin Hinich & Periklis Gogas, 2012. "Episodic Nonlinearity in Leading Global Currencies," Open Economies Review, Springer, vol. 23(2), pages 337-357, April.
    10. John Y. Campbell, 2007. "Estimating the Equity Premium," NBER Working Papers 13423, National Bureau of Economic Research, Inc.
    11. Bekiros, Stelios & Gupta, Rangan & Majumdar, Anandamayee, 2016. "Incorporating economic policy uncertainty in US equity premium models: A nonlinear predictability analysis," Finance Research Letters, Elsevier, vol. 18(C), pages 291-296.
    12. Cenesizoglu, Tolga & Timmermann, Allan, 2012. "Do return prediction models add economic value?," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2974-2987.
    13. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    14. Loukia Meligkotsidou & Ekaterini Panopoulou & Ioannis D. Vrontos & Spyridon D. Vrontos, 2014. "A Quantile Regression Approach to Equity Premium Prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(7), pages 558-576, November.
    15. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    16. Bekiros, Stelios & Gupta, Rangan, 2015. "Predicting stock returns and volatility using consumption-aggregate wealth ratios: A nonlinear approach," Economics Letters, Elsevier, vol. 131(C), pages 83-85.
    17. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    18. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    19. Ahmad Baharumshah & Venus Liew, 2006. "Forecasting Performance of Exponential Smooth Transition Autoregressive Exchange Rate Models," Open Economies Review, Springer, vol. 17(2), pages 235-251, April.
    20. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    21. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rangan Gupta & Patrick Kanda & Mark E. Wohar, 2021. "Predicting Stock Market Movements in the United States: The Role of Presidential Approval Ratings," International Review of Finance, International Review of Finance Ltd., vol. 21(1), pages 324-335, March.
    2. Mehmet Balcilar & Rangan Gupta & Christian Pierdzioch, 2022. "Oil-Price Uncertainty and International Stock Returns: Dissecting Quantile-Based Predictability and Spillover Effects Using More than a Century of Data," Energies, MDPI, vol. 15(22), pages 1-26, November.
    3. Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2023. "Tail risks and forecastability of stock returns of advanced economies: evidence from centuries of data," The European Journal of Finance, Taylor & Francis Journals, vol. 29(4), pages 466-481, March.
    4. Rangan Gupta & Christian Pierdzioch, 2023. "Do U.S. economic conditions at the state level predict the realized volatility of oil-price returns? A quantile machine-learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-22, December.
    5. Mehmet Balcilar & David Gabauer & Rangan Gupta & Christian Pierdzioch, 2023. "Climate Risks and Forecasting Stock Market Returns in Advanced Economies over a Century," Mathematics, MDPI, vol. 11(9), pages 1-21, April.
    6. Afees A. Salisu & Rangan Gupta, 2021. "Commodity Prices and Forecastability of South African Stock Returns Over a Century: Sentiments versus Fundamentals," Working Papers 202144, University of Pretoria, Department of Economics.
    7. Gupta, Rangan & Huber, Florian & Piribauer, Philipp, 2020. "Predicting international equity returns: Evidence from time-varying parameter vector autoregressive models," International Review of Financial Analysis, Elsevier, vol. 68(C).
    8. Gupta, Rangan & Ji, Qiang & Pierdzioch, Christian & Plakandaras, Vasilios, 2023. "Forecasting the conditional distribution of realized volatility of oil price returns: The role of skewness over 1859 to 2023," Finance Research Letters, Elsevier, vol. 58(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Balcilar & Rangan Gupta & Christian Pierdzioch, 2022. "Oil-Price Uncertainty and International Stock Returns: Dissecting Quantile-Based Predictability and Spillover Effects Using More than a Century of Data," Energies, MDPI, vol. 15(22), pages 1-26, November.
    2. Gebka, Bartosz & Wohar, Mark E., 2019. "Stock return distribution and predictability: Evidence from over a century of daily data on the DJIA index," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 1-25.
    3. Gupta, Rangan & Wohar, Mark, 2017. "Forecasting oil and stock returns with a Qual VAR using over 150years off data," Energy Economics, Elsevier, vol. 62(C), pages 181-186.
    4. Gupta, Rangan & Mwamba, John W. Muteba & Wohar, Mark E., 2018. "The role of partisan conflict in forecasting the U.S. equity premium: A nonparametric approach," Finance Research Letters, Elsevier, vol. 25(C), pages 131-136.
    5. Baetje, Fabian & Menkhoff, Lukas, 2016. "Equity premium prediction: Are economic and technical indicators unstable?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1193-1207.
    6. Christou, Christina & Gupta, Rangan, 2020. "Forecasting equity premium in a panel of OECD countries: The role of economic policy uncertainty," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 243-248.
    7. Bouri, Elie & Gupta, Rangan & Majumdar, Anandamayee & Subramaniam, Sowmya, 2021. "Time-varying risk aversion and forecastability of the US term structure of interest rates," Finance Research Letters, Elsevier, vol. 42(C).
    8. Nonejad, Nima, 2021. "Predicting equity premium using news-based economic policy uncertainty: Not all uncertainty changes are equally important," International Review of Financial Analysis, Elsevier, vol. 77(C).
    9. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    10. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    11. Gupta, Rangan & Ji, Qiang & Pierdzioch, Christian & Plakandaras, Vasilios, 2023. "Forecasting the conditional distribution of realized volatility of oil price returns: The role of skewness over 1859 to 2023," Finance Research Letters, Elsevier, vol. 58(PC).
    12. Bekiros, Stelios & Gupta, Rangan & Majumdar, Anandamayee, 2016. "Incorporating economic policy uncertainty in US equity premium models: A nonlinear predictability analysis," Finance Research Letters, Elsevier, vol. 18(C), pages 291-296.
    13. Thomadakis, Apostolos, 2016. "Do Combination Forecasts Outperform the Historical Average? Economic and Statistical Evidence," MPRA Paper 71589, University Library of Munich, Germany.
    14. Rapach, David E. & Ringgenberg, Matthew C. & Zhou, Guofu, 2016. "Short interest and aggregate stock returns," Journal of Financial Economics, Elsevier, vol. 121(1), pages 46-65.
    15. Narayan, Paresh Kumar & Gupta, Rangan, 2015. "Has oil price predicted stock returns for over a century?," Energy Economics, Elsevier, vol. 48(C), pages 18-23.
    16. Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
    17. Bätje, Fabian & Menkhoff, Lukas, 2016. "Predicting the equity premium via its components," VfS Annual Conference 2016 (Augsburg): Demographic Change 145789, Verein für Socialpolitik / German Economic Association.
    18. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    19. Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.
    20. Ferreira, Miguel A. & Santa-Clara, Pedro, 2011. "Forecasting stock market returns: The sum of the parts is more than the whole," Journal of Financial Economics, Elsevier, vol. 100(3), pages 514-537, June.

    More about this item

    Keywords

    stock markets; current account; predictability; quantile regression;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F32 - International Economics - - International Finance - - - Current Account Adjustment; Short-term Capital Movements
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.