IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/200815.html
   My bibliography  Save this paper

A Dynamic Factor Model for Forecasting Macroeconomic Variables in South Africa

Author

Listed:
  • Rangan Gupta

    (Department of Economics, University of Pretoria)

  • Alain Kabundi

    (Department of Economics and Econometrics, University of Johannesburg)

Abstract

This paper uses Dynamic Factor Models (DFMs), estimated under both classical and Bayesian assumptions, which accommodates a large cross-section of macroeconomic time series for forecasting per capita growth rate, inflation, and the nominal short-term interest rate for the South African economy. The DFMs used in this study contains 267 quarterly series observed over the period of 1980Q1-2006Q4. The results, based on the RMSEs of one- to four-quarters-ahead out of sample forecasts over 2001Q1 to 2006Q4, indicate that the DFMs significantly outperform alternative models such as an unrestricted VAR, Bayesian VARs (BVARs) and a typical New Keynesian Dynamic Stochastic General Equilibrium (NKDSGE) model in forecasting the three variables under consideration, hence, indicating the blessings of dimensionality.

Suggested Citation

  • Rangan Gupta & Alain Kabundi, 2008. "A Dynamic Factor Model for Forecasting Macroeconomic Variables in South Africa," Working Papers 200815, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:200815
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirriam Chitalu Chama-Chiliba & Rangan Gupta & Nonophile Nkambule & Naomi Tlotlego, 2011. "Forecasting Key Macroeconomic Variables of the South African Economy Using Bayesian Variable Selection," Working Papers 201132, University of Pretoria, Department of Economics.
    2. Rangan Gupta & Monique Reid, 2013. "Macroeconomic surprises and stock returns in South Africa," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 30(3), pages 266-282, July.
    3. Poghosyan, K., 2012. "Structural and reduced-form modeling and forecasting with application to Armenia," Other publications TiSEM ad1a24c3-15e6-4f04-b338-3, Tilburg University, School of Economics and Management.
    4. Rangan Gupta & Rudi Steinbach, 2010. "Forecasting Key Macroeconomic Variables of the South African Economy: A Small Open Economy New Keynesian DSGE-VAR Model," Working Papers 201019, University of Pretoria, Department of Economics.
    5. Gupta, Rangan & Steinbach, Rudi, 2013. "A DSGE-VAR model for forecasting key South African macroeconomic variables," Economic Modelling, Elsevier, vol. 33(C), pages 19-33.
    6. Rangan Gupta & Sonali Das, 2010. "Predicting Downturns in the US Housing Market: A Bayesian Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 41(3), pages 294-319, October.
    7. Rangan Gupta & Alain Kabundi, 2010. "Forecasting macroeconomic variables in a small open economy: a comparison between small- and large-scale models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 168-185.
    8. Alain Kabundi & Rangan Gupta & Sonali Das, 2008. "Is a DFM well suited for forecasting regional house price inflation?," Working Papers 085, Economic Research Southern Africa.
    9. Daniel Armeanu & Jean Vasile Andrei & Leonard Lache & Mirela Panait, 2017. "A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.

    More about this item

    Keywords

    Dynamic Factor Model; VAR; BVAR; NKDSGE Model; Forecast Accuracy;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:200815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.