IDEAS home Printed from
   My bibliography  Save this paper

Forecasting the South African Economy with Gibbs Sampled BVECMs


  • Rangan Gupta

    () (Department of Economics, University of Pretoria)


The paper uses Gibbs sampling technique to estimate a heteroscedastic Bayesian Vector Error Correction Model (BVECM) of the South African economy for the period 1970:1-2000:4, and then forecast GDP, consumption, investment, short and long term interest rates, and the CPI over the period of 2001:1 to 2005:4. We find that a tight prior produces relatively more accurate forecasts than a loose one. The out-of-sample-forecast accuracy resulting from the Gibbs sampled BVECM is compared with those generated from a Classical VECM and a homoscedastic BVECM. The homoscedastic BVECM is found to produce the most accurate out of sample forecasts.

Suggested Citation

  • Rangan Gupta, 2007. "Forecasting the South African Economy with Gibbs Sampled BVECMs," Working Papers 200701, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:200701

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    1. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Mirriam Chitalu Chama-Chiliba & Rangan Gupta & Nonophile Nkambule & Naomi Tlotlego, 2011. "Forecasting Key Macroeconomic Variables of the South African Economy Using Bayesian Variable Selection," Working Papers 201132, University of Pretoria, Department of Economics.
    2. Rangan Gupta & Sonali Das, 2010. "Predicting Downturns in the US Housing Market: A Bayesian Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 41(3), pages 294-319, October.
    3. Rangan Gupta & Sonali Das, 2008. "Spatial Bayesian Methods Of Forecasting House Prices In Six Metropolitan Areas Of South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 76(2), pages 298-313, June.
    4. Rangan Gupta & Alain Kabundi, 2010. "Forecasting macroeconomic variables in a small open economy: a comparison between small- and large-scale models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 168-185.
    5. Caraiani, Petre, 2010. "Forecasting Romanian GDP Using a BVAR Model," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 76-87, December.
    6. Annari De Waal & ReneƩ Van Eyden & Rangan Gupta, 2015. "Do we need a global VAR model to forecast inflation and output in South Africa?," Applied Economics, Taylor & Francis Journals, vol. 47(25), pages 2649-2670, May.
    7. Rangan Gupta, 2009. "Bayesian Methods Of Forecasting Inventory Investment," South African Journal of Economics, Economic Society of South Africa, vol. 77(1), pages 113-126, March.
    8. repec:eee:ecmode:v:67:y:2017:i:c:p:1-9 is not listed on IDEAS

    More about this item


    VECM and BVECM; Forecast Accuracy; BVECM Forecasts; VECM Forecasts; Gibbs Sampling;

    JEL classification:

    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:200701. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rangan Gupta) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.