IDEAS home Printed from
   My bibliography  Save this paper

Player splitting, players merging, the Shapley set value and the Harsanyi set value


  • Besner, Manfred


Shapley (1953a) introduced the weighted Shapley values as a family of values, also known as Shapley set. For each exogenously given weight system exists a seperate TU-value. Shapley (1981) and Dehez (2011), in the context of cost allocation, and Radzik (2012), in general, presented a value for weighted TU-games that covers the hole family of weighted Shapley values all at once. To distinguish this value from a weighted Shapley value in TU-games we call it Shapley set value. This value coincides with a weighted Shapley value only on a subdomain and allows weights which can depend on coalition functions. Hammer (1977) and Vasil’ev (1978) introduced independently the Harsanyi set, also known as selectope (Derks, Haller and Peters, 2000), containing TU-values which are referred to as Harsanyi-payoffs. These values are obtained by distributing the dividends from all coalitions by a sharing system that is independent from the coalition function. In this paper we introduce the Harsanyi set value that, similar to the Shapley set value, covers the hole family of Harsanyi payoffs at once, allows not exogenously given share systems and coincides thus also with non linear values on some subdomains. We present some new axiomatizations of the Shapley set value and the Harsanyi set value containing a player splitting or a players merging property respectively as a main characterizing element that recommend these values for profit distribution and cost allocation.

Suggested Citation

  • Besner, Manfred, 2018. "Player splitting, players merging, the Shapley set value and the Harsanyi set value," MPRA Paper 87125, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:87125

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    More about this item


    Cost allocation · Profit distribution · Player splitting · Players merging · Shapley set value · Harsanyi set value;

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:87125. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.