IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Least squares estimation of joint production functions by the Differential Evolution method of global optimization

Listed author(s):
  • Mishra, SK

In the economics of joint production one often distinguishes between the two cases: the one in which a firm produces multiple products each produced under separate production process, and the other “true joint production” where a number of outputs are produced from a single production process, where each product shares common inputs. In the econometric practice the first case has often been dealt with by aggregation of individual production functions into a macro production function. The second case has often called for estimation of an implicit aggregate production function. Most of the studies relating to estimation of joint production functions have noted two difficulties: first that allocation of inputs to different outputs are not known, and the second that a method of estimation (such as the Least Squares) cannot have more than one dependent variable. Construction of a composite (macro) output function is at least partly motivated by the inability of the estimation methods to deal with multiple dependent variables and different forms of production function for different outputs. This study has conducted some simulation experiments on joint estimation of the CES, the Transcendental and the Nerlove-Ringstad functions. Allocation parameters (of inputs) across the products have been introduced. Estimation has been done jointly, but without constructing a composite macro production function or an output transformation function. We use nonlinear least squares based on the Differential Evolution method of global optimization that permits fitting multiple production functions simultaneously.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

File URL:
File Function: revised version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 4813.

in new window

Date of creation: 11 Sep 2007
Handle: RePEc:pra:mprapa:4813
Contact details of provider: Postal:
Ludwigstraße 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Vinod, Hrishikesh D, 1969. "Econometrics of Joint Production-A Reply," Econometrica, Econometric Society, vol. 37(4), pages 739-740, October.
  2. Dhrymes, Phoebus J & Mitchell, B M, 1969. "Estimation of Joint Production Functions," Econometrica, Econometric Society, vol. 37(4), pages 732-736, October.
  3. K. Sato, 1967. "A Two-Level Constant-Elasticity-of-Substitution Production Function," Review of Economic Studies, Oxford University Press, vol. 34(2), pages 201-218.
  4. Chetty, V Karuppan, 1969. "Econometrics of Joint Production: A Comment," Econometrica, Econometric Society, vol. 37(4), pages 731-731, October.
  5. Chizmar, John F & Zak, Thomas A, 1983. "Modeling Multiple Outputs in Educational Production Functions," American Economic Review, American Economic Association, vol. 73(2), pages 17-22, May.
  6. Vinod, H. D., 1976. "Canonical ridge and econometrics of joint production," Journal of Econometrics, Elsevier, vol. 4(2), pages 147-166, May.
  7. Diewert, W E, 1971. "An Application of the Shephard Duality Theorem: A Generalized Leontief Production Function," Journal of Political Economy, University of Chicago Press, vol. 79(3), pages 481-507, May-June.
  8. Rao, Potluri, 1969. "A Note on Econometrics of Joint Production," Econometrica, Econometric Society, vol. 37(4), pages 737-738, October.
  9. Mishra, SK, 2007. "Performance of Differential Evolution Method in Least Squares Fitting of Some Typical Nonlinear Curves," MPRA Paper 4634, University Library of Munich, Germany.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:4813. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.