IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Novel Methods for Multivariate Ordinal Data applied to Genetic Diplotypes, Genomic Pathways, Risk Profiles, and Pattern Similarity

Listed author(s):
  • Wittkowski, Knut M.

Introduction: Conventional statistical methods for multivariate data (e.g., discriminant/regression) are based on the (generalized) linear model, i.e., the data are interpreted as points in a Euclidian space of independent dimensions. The dimensionality of the data is then reduced by assuming the components to be related by a specific function of known type (linear, exponential, etc.), which allows the distance of each point from a hyperspace to be determined. While mathematically elegant, these approaches may have shortcomings when applied to real world applications where the relative importance, the functional relationship, and the correlation among the variables tend to be unknown. Still, in many applications, each variable can be assumed to have at least an “orientation”, i.e., it can reasonably assumed that, if all other conditions are held constant, an increase in this variable is either “good” or “bad”. The direction of this orientation can be known or unknown. In genetics, for instance, having more “abnormal” alleles may increase the risk (or magnitude) of a disease phenotype. In genomics, the expression of several related genes may indicate disease activity. When screening for security risks, more indicators for atypical behavior may constitute raise more concern, in face or voice recognition, more indicators being similar may increase the likelihood of a person being identified. Methods: In 1998, we developed a nonparametric method for analyzing multivariate ordinal data to assess the overall risk of HIV infection based on different types of behavior or the overall protective effect of barrier methods against HIV infection. By using u-statistics, rather than the marginal likelihood, we were able to increase the computational efficiency of this approach by several orders of magnitude. Results: We applied this approach to assessing immunogenicity of a vaccination strategy in cancer patients. While discussing the pitfalls of the conventional methods for linking quantitative traits to haplotypes, we realized that this approach could be easily modified into to a statistically valid alternative to a previously proposed approaches. We have now begun to use the same methodology to correlate activity of anti-inflammatory drugs along genomic pathways with disease severity of psoriasis based on several clinical and histological characteristics. Conclusion: Multivariate ordinal data are frequently observed to assess semiquantitative characteristics, such as risk profiles (genetic, genomic, or security) or similarity of pattern (faces, voices, behaviors). The conventional methods require empirical validation, because the functions and weights chosen cannot be justified on theoretical grounds. The proposed statistical method for analyzing profiles of ordinal variables, is intrinsically valid. Since no additional assumptions need to be made, the often time-consuming empirical validation can be skipped.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 4570.

in new window

Date of creation: 2003
Handle: RePEc:pra:mprapa:4570
Contact details of provider: Postal:
Ludwigstraße 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Li K-C. & Aragon Y. & Shedden K. & Thomas Agnan C., 2003. "Dimension Reduction for Multivariate Response Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 99-109, January.
  2. Quinn McNemar, 1947. "Note on the sampling error of the difference between correlated proportions or percentages," Psychometrika, Springer;The Psychometric Society, vol. 12(2), pages 153-157, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:4570. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.