IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/41835.html
   My bibliography  Save this paper

Improved tests for spatial correlation

Author

Listed:
  • Robinson, Peter M.
  • Rossi, Francesca

Abstract

We consider testing the null hypothesis of no spatial autocorrelation against the alternative of first order spatial autoregression. A Wald test statistic has good first order asymptotic properties, but these may not be relevant in small or moderate-sized samples, especially as (depending on properties of the spatial weight matrix) the usual parametric rate of convergence may not be attained. We thus develop tests with more accurate size properties, by means of Edgeworth expansions and the bootstrap. The finite-sample performance of the tests is examined in Monte Carlo simulations.

Suggested Citation

  • Robinson, Peter M. & Rossi, Francesca, 2012. "Improved tests for spatial correlation," MPRA Paper 41835, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:41835
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/41835/1/MPRA_paper_41835.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Phillips, Peter C B, 1977. "Approximations to Some Finite Sample Distributions Associated with a First-Order Stochastic Difference Equation," Econometrica, Econometric Society, vol. 45(2), pages 463-485, March.
    2. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    3. Forchini, G., 2002. "The Exact Cumulative Distribution Function Of A Ratio Of Quadratic Forms In Normal Variables, With Application To The Ar(1) Model," Econometric Theory, Cambridge University Press, vol. 18(04), pages 823-852, August.
    4. Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(02), pages 252-277, April.
    5. Paparoditis, Efstathios & Politis, Dimitris N., 2005. "Bootstrap hypothesis testing in regression models," Statistics & Probability Letters, Elsevier, vol. 74(4), pages 356-365, October.
    6. Case, Anne C, 1991. "Spatial Patterns in Household Demand," Econometrica, Econometric Society, vol. 59(4), pages 953-965, July.
    7. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    8. Hillier, G.H., 1999. "The density of a quadratic form in a vector uniformly distributed on the n-sphere," Discussion Paper Series In Economics And Econometrics 9902, Economics Division, School of Social Sciences, University of Southampton.
    9. Hillier, Grant, 2001. "THE DENSITY OF A QUADRATIC FORM IN A VECTOR UNIFORMLY DISTRIBUTED ON THE n-SPHERE," Econometric Theory, Cambridge University Press, vol. 17(01), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter M. Robinson & Francesca Rossi, 2014. "Improved Lagrange multiplier tests in spatial autoregressions," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 139-164, February.
    2. repec:cep:stiecm:/2013/566 is not listed on IDEAS

    More about this item

    Keywords

    Spatial Autocorrelation; Ordinary Least Squares; Hypothesis Testing; Edgeworth Expansion; Bootstrap;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:41835. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.