IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v39y2023i1p107-145_4.html

Continuously Updated Indirect Inference In Heteroskedastic Spatial Models

Author

Listed:
  • Kyriacou, Maria
  • Phillips, Peter C.B.
  • Rossi, Francesca

Abstract

Spatial units typically vary over many of their characteristics, introducing potential unobserved heterogeneity which invalidates commonly used homoskedasticity conditions. In the presence of unobserved heteroskedasticity, methods based on the quasi-likelihood function generally produce inconsistent estimates of both the spatial parameter and the coefficients of the exogenous regressors. A robust generalized method of moments estimator as well as a modified likelihood method have been proposed in the literature to address this issue. The present paper constructs an alternative indirect inference (II) approach which relies on a simple ordinary least squares procedure as its starting point. Heteroskedasticity is accommodated by utilizing a new version of continuous updating that is applied within the II procedure to take account of the parameterization of the variance–covariance matrix of the disturbances. Finite-sample performance of the new estimator is assessed in a Monte Carlo study. The approach is implemented in an empirical application to house price data in the Boston area, where it is found that spatial effects in house price determination are much more significant under robustification to heterogeneity in the equation errors.

Suggested Citation

  • Kyriacou, Maria & Phillips, Peter C.B. & Rossi, Francesca, 2023. "Continuously Updated Indirect Inference In Heteroskedastic Spatial Models," Econometric Theory, Cambridge University Press, vol. 39(1), pages 107-145, February.
  • Handle: RePEc:cup:etheor:v:39:y:2023:i:1:p:107-145_4
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466621000384/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Rossi, Francesca & Robinson, Peter M., 2023. "Higher-order least squares inference for spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 244-269.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:39:y:2023:i:1:p:107-145_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.