IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Finite Difference Approximation for Linear Stochastic Partial Differential Equations with Method of Lines

Listed author(s):
  • McDonald, Stuart

A stochastic partial differential equation, or SPDE, describes the dynamics of a stochastic process defined on a space-time continuum. This paper provides a new method for solving SPDEs based on the method of lines (MOL). MOL is a technique that has largely been used for numerically solving deterministic partial differential equations (PDEs). MOL works by transforming the PDE into a system of ordinary differential equations (ODEs) by discretizing the spatial dimension of the PDE. The resulting system of ODEs is then solved by application of either a finite difference or a finite element method. This paper provides a proof that the MOL can be used to provide a finite difference approximation of the boundary value solutions for two broad classes of linear SPDEs, the linear elliptic and parabolic SPDEs.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 3983.

in new window

Date of creation: 10 Oct 2006
Date of revision: 30 May 2007
Handle: RePEc:pra:mprapa:3983
Contact details of provider: Postal:
Ludwigstra├če 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Ma, Jin & Yong, Jiongmin, 1997. "Adapted solution of a degenerate backward spde, with applications," Stochastic Processes and their Applications, Elsevier, vol. 70(1), pages 59-84, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:3983. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.