IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/38778.html
   My bibliography  Save this paper

An alternative to the Baum-Welch recursions for hidden Markov models

Author

Listed:
  • Bartolucci, Francesco

Abstract

We develop a recursion for hidden Markov model of any order h, which allows us to obtain the posterior distribution of the latent state at every occasion, given the previous h states and the observed data. With respect to the well-known Baum-Welch recursions, the proposed recursion has the advantage of being more direct to use and, in particular, of not requiring dummy renormalizations to avoid numerical problems. We also show how this recursion may be expressed in matrix notation, so as to allow for an efficient implementation, and how it may be used to obtain the manifest distribution of the observed data and for parameter estimation within the Expectation-Maximization algorithm. The approach is illustrated by an application to nancial data which is focused on the study of the dynamics of the volatility level of log-returns.

Suggested Citation

  • Bartolucci, Francesco, 2011. "An alternative to the Baum-Welch recursions for hidden Markov models," MPRA Paper 38778, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:38778
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/38778/1/MPRA_paper_38778.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Francesco Bartolucci, 2002. "A recursive algorithm for Markov random fields," Biometrika, Biometrika Trust, vol. 89(3), pages 724-730, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Expectation-Maximization algorithm; forward-backward recursions; latent Markov model; stochastic volatility;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:38778. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.