IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2008i1p103-111.html

A method for bias-reduction of sample-based MLE of the autologistic model

Author

Listed:
  • Magnussen, Steen
  • Reeves, Rob

Abstract

Sample-based maximum likelihood estimates (MLEI) of the autologistic function parameters obtained from a one-stage simple random cluster sample from a finite population of binary units on a regular grid are biased due to the neglected association between population units across cluster boundaries. This is because such estimates are based on the autologistic lattice of size corresponding to the sample cluster rather than that of the overall grid of interest. Considering a buffer of one row (column) of units around each sample cluster with 'missing data' and assuming independence of these buffered clusters permits a new set of maximum likelihood estimates (MLEB) after integrating out the missing data in the likelihood. MLEB are much less biased than MLEI and have much smaller root mean square errors. In a simulation study with square regular clusters with m={4,5,6,7} rows (columns) of units, sample sizes n={50,100,200}, and nine 420420 spatial fields with known values of the autologistic model parameters the buffering eliminated about 75% of the bias in MLEI and reduced root mean square errors accordingly. Achieved MLEB coverage rates of 95% confidence intervals were slightly conservative. We recommend buffering since it is easy to implement without adding significantly to computational efforts.

Suggested Citation

  • Magnussen, Steen & Reeves, Rob, 2008. "A method for bias-reduction of sample-based MLE of the autologistic model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 103-111, September.
  • Handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:103-111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00328-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. A. N. Pettitt & N. Friel & R. Reeves, 2003. "Efficient calculation of the normalizing constant of the autologistic and related models on the cylinder and lattice," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 235-246, February.
    2. Francesco Bartolucci, 2002. "A recursive algorithm for Markov random fields," Biometrika, Biometrika Trust, vol. 89(3), pages 724-730, August.
    3. R. Reeves, 2004. "Efficient recursions for general factorisable models," Biometrika, Biometrika Trust, vol. 91(3), pages 751-757, September.
    4. S. Magnussen & R. Reeves, 2007. "Sample-based Maximum Likelihood Estimation of the Autologistic Model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(5), pages 547-561.
    5. Michael L. Stein & Zhiyi Chi & Leah J. Welty, 2004. "Approximating likelihoods for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 275-296, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Ick Hoon & Liang, Faming, 2014. "Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 402-416.
    2. Solaiman Afroughi & Soghrat Faghihzadeh & Majid Jafari Khaledi & Mehdi Ghandehari Motlagh & Ebrahim Hajizadeh, 2011. "Analysis of clustered spatially correlated binary data using autologistic model and Bayesian method with an application to dental caries of 3--5-year-old children," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2763-2774, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cécile Hardouin & Xavier Guyon, 2014. "Recursions on the marginals and exact computation of the normalizing constant for Gibbs processes," Computational Statistics, Springer, vol. 29(6), pages 1637-1650, December.
    2. Lim, Johan & Wang, Xinlei & Sherman, Michael, 2007. "An adjustment for edge effects using an augmented neighborhood model in the spatial auto-logistic model," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3679-3688, May.
    3. Wanchuang Zhu & Yanan Fan, 2023. "A synthetic likelihood approach for intractable markov random fields," Computational Statistics, Springer, vol. 38(2), pages 749-777, June.
    4. Solaiman Afroughi & Soghrat Faghihzadeh & Majid Jafari Khaledi & Mehdi Ghandehari Motlagh & Ebrahim Hajizadeh, 2011. "Analysis of clustered spatially correlated binary data using autologistic model and Bayesian method with an application to dental caries of 3--5-year-old children," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2763-2774, February.
    5. Daniel A Griffith, 2004. "A Spatial Filtering Specification for the Autologistic Model," Environment and Planning A, , vol. 36(10), pages 1791-1811, October.
    6. Nial Friel & Håvard Rue, 2007. "Recursive computing and simulation-free inference for general factorizable models," Biometrika, Biometrika Trust, vol. 94(3), pages 661-672.
    7. Huang, Whitney K. & Chung, Yu-Min & Wang, Yu-Bo & Mandel, Jeff E. & Wu, Hau-Tieng, 2022. "Airflow recovery from thoracic and abdominal movements using synchrosqueezing transform and locally stationary Gaussian process regression," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    8. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    9. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    10. Rulloni, Valeria, 2014. "Uniqueness condition for an auto-logistic model," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 1-6.
    11. Zilber, Daniel & Katzfuss, Matthias, 2021. "Vecchia–Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    12. Zih‐Bing Chen & Hao‐Yun Huang & Cheng‐Xin Yang, 2025. "Comparative Analysis of Bootstrap Techniques for Confidence Interval Estimation in Spatial Covariance Parameters With Large Spatial Data," Environmetrics, John Wiley & Sons, Ltd., vol. 36(3), April.
    13. Yan Chen & Youran Qi & Qing Liu & Peter Chien, 2018. "Sequential sampling enhanced composite likelihood approach to estimation of social intercorrelations in large-scale networks," Quantitative Marketing and Economics (QME), Springer, vol. 16(4), pages 409-440, December.
    14. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    15. Jun, Mikyoung, 2014. "Matérn-based nonstationary cross-covariance models for global processes," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 134-146.
    16. M. Bevilacqua & A. Fassò & C. Gaetan & E. Porcu & D. Velandia, 2016. "Covariance tapering for multivariate Gaussian random fields estimation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 21-37, March.
    17. repec:jss:jstsof:19:i02 is not listed on IDEAS
    18. Bledar A. Konomi & Emily L. Kang & Ayat Almomani & Jonathan Hobbs, 2023. "Bayesian Latent Variable Co-kriging Model in Remote Sensing for Quality Flagged Observations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 423-441, September.
    19. Paciorek, Christopher J. & Lipshitz, Benjamin & Zhuo, Wei & Prabhat, . & Kaufman, Cari G. G. & Thomas, Rollin C., 2015. "Parallelizing Gaussian Process Calculations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i10).
    20. Guhaniyogi, Rajarshi & Banerjee, Sudipto, 2019. "Multivariate spatial meta kriging," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 3-8.
    21. Morales-Oñate, Víctor & Crudu, Federico & Bevilacqua, Moreno, 2021. "Blockwise Euclidean likelihood for spatio-temporal covariance models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 176-201.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:103-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.